Bayesian Designs for Phase I-Il
Clinical Trials

Peter F. Thall and Ying Yuan

Department of Biostatistics
M.D. Anderson Cancer Center

A Half-Day Short Course SC3
2020 ASA Biopharmaceutical Section

Regulatory-Industry Statistics Workshop
Tuesday, September 22, 2020



Textbook: Yuan, Nguyen, and Thall
Bayesian Designs for Phase I-1l Clinical Trials
Chapman & Hall/CRC Biostatistics Series, 2016

Chapman & Hall/CRC Biostatistics Series

Bayesian Designs
for Phase I-ll
Clinical Trials

Ying Yuan
Hoang Q. Nguyen
Peter F. Thall

Canrsines Mariti



Lecture Schedule ( Eastern Standard Time )

Lecture 1: 2:00 — 2:50 Thall
* Problems with the Phase | - Phase Il paradigm
* Phase I-Il designs

( 5 minute break)

Lecture 2: 2:55 — 3:40 Thall
« The EffTox phase I-Il design
 Utility based phase I-1l designs

(10 minute break)

Lecture 3: 3:50 — 4:40 Yuan
* Model assisted phase I-Il designs
* Phase I-Il designs for immunotherapies

( 5 minute break )

Lecture 4: 4:45 —5:30 Yuan
» Tissue agnostic phase I-1l designs
« Handling late onset toxicity and efficacy




The Conventional Phase | = Phase Il Paradigm

Phase |

Goal: Determine a "safe” dose (or MTD = maximum tolerated
dose) of an experimental agent, which may or may not have
anti-disease efficacy, for use in later phase Il or phase lll trials

= Do this based on DLT = Dose Limiting Toxicity, usually a
binary indicator of one or more specific adverse events
within a given follow up period

= Choose doses for successive cohorts of 1, 2, or 3 patients.

» Usually done using a “3+3" algorithm -> Escalate until “Too
much Toxicity” then de-escalate, and never re-escalate

= Sometimes done using a variant of the Continual
Reassessment Method (CRM)

» |gnore Efficacy in the dose-finding algorithm
= Often, treat a large “expansion cohort” at the selected MTD




The Conventional Phase | = Phase Il Paradigm

Phase Il

Goal : Determine whether the new agent, administered at the
MTD chosen in phase |, is sufficiently “promising” to
motivate a large randomized phase Il trial

= Do this based on the probability of “Response”, usually a
binary indicator of an Efficacy event, compared to some
fixed “standard” or “null” response probability p,, often
using one of the Simon (1989) 2-stage designs.

» |gnore Toxicity in the design.

= Have a Data Monitoring Committee to review the data and
keep an eye on adverse events (AEs), but do not specify
any formal, objective safety rules for stopping the trial
early if the observed AE rate is to high.




Common Protocol Description of “the” 343 Algorithm

[Number of patients with DLT] /
[Number of patients evaluated]
at a given dose level

Action

0/3

Treat 3 pats at the next higher
dose level (Escalate)

1/3

Treat at least 3 more pats at the
current dose level:
If 0/3 DLTs = Escalate
If >1/3 DLTs = De-escalate

>2/3

Stop escalation. If only 3 pats
were treated at the next lower
dose, treat 3 more at that dose.

MTD: The highest dose at which < 1/6 pats had DLTs. 6 pats
must be treated at a dose before it is declared the MTD




Logical Problems with this 3+3 Algorithm

1. If a MTD does not exist, the algorithm does not say what to
do. E.qg.If 2/3 DLTs are seen at the lowest dose, or 0/6 DLTs

are seen at the highest dose.

2. The “>27 in the left column is ambiguous: 2/3, 2/6, and 2/9
have very different meanings.

3. Absence of a stopping rule creates ambiguity:

« If you observe 0/3 DLTs at d=1, 0/3 at d=2, then 1/3 + 1/3 =
2/6 at d=3, so de-escalate to d=2, and then observe 0/3 for a

total of 0/6 at d=2, should you
—> treat 3 more patients at d=2, or
—> stop and declare d=2 the MTD?

 If you treat 3 more patients at d=2, you may end up
observing O, 1, 2, or 3 DLTs In 9 patients. The algorithm
does not say what to do, or what to conclude, in these

cases.



Two commonly used phase I trial 3+3 algorithms.

General Rules
1. Never re-escalate to a level after de-escalating from that level
2. It decision is to de-escalate or choose one level lower but current level is
lowest. stop and choose no level
3. If decision is to escalate above highest level, stop and choose no level.
4. It decision is to stop and choose one level lower, but one level lower has
3 or fewer patients, treat 3 more at that lower level

# toxicities/ # patients Decision
0/3 Escalate one level, if allowed by General
Rule 1, otherwise treat 3 more at current level.
0/3 £ [0/3 or 1/3]f Stop, choose current level as MTD

0/3 + 2/31 3+3 A: Stop, choose one level lower as MTD
0/3 + 2/31 3+3 B: Stop. choose current level as MTD
0/3 + 3/3 Stop, choose one level lower as N'TD

1/3 Treat 3 more at current level
1/34+1/3 343 A: Stop, choose one level lower as MTD
1/3+1/3 343 B: Stop, choose current level as MTD
2/3 or 3/3 De-escalate one level
1/3+0/3 Escalate one level if allowed by General

Rule 1, otherwise choose current level as N'TD

1/34[2/30r3/3] Stop, choose one level lower as MTD

I after de-escalating back to this level from a higher level




Typical Data from a Phase | Trial after 3+3

Dose mg/m? | # Toxicities / # Patients Posterior 95% Credible
Interval
100 0/3 .00 — .43
200 1/6 01 — .52
300 216 .06 — .69
400 — —

Usual claim: “The MTD is 200 mg/m?”

Reality: These trial results all are very unreliable

« A 95% CI for Pr(Tox | d=MTD) runs from .01 to .52

« Toxicity severity level is ignored.

« Efficacy is ignored. What if

Pr(response | d=200) = .25 and Pr(response | d=300) = .50 ?




For each of the four datasets below, posterior
95% Credible Intervals (Cls) for Pr(Toxicity | MTD)
all include the interval [ .07 - .41]
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Actual Properties of 3+3 Algorithms

Produce very small samples - Very unreliable
Very short memory - They waste data

Many different versions.

Many decisions are left unspecified.

No explicit target Pr(DLT)

No explicit upper limit on Pr(DLT) = Likely to
choose an unsafe MTD

Ignore Efficacy - Likely to choose an ineffective
MTD

Do not allow re-escalation after de-escalation from
a “toxic” dose, based on a tiny amount of data -

-> A dose above the MTD that may actually be safe
and have higher Efficacy Is likely to be missed.



Continual Reassessment Method (CRM, 1990)

1. Define a binary DLT that is scored quickly

2. Set N= maximum sample size, c=cohort size=1, 2, or 3

3. Assume a simple model for Pr(DLT | d=dose)

4. Choose a fixed target p* = Pr(DLT)

5. For each cohort, use all (d, DLT) data to choose a dose
d"W with E{ Pr(DLT | d"®%) | data} closest to p*

6. When N is reached, the last choice is the “MTD”

124

Implicit Assumption Underlying All “Phase | Toxicity Only
Dose-Finding Designs (3+3 or CRM):

There is an Efficacy outcome for which Pr(Efficacy | d)
increases with dose. If not, then why not treat all patients
at d =0, (do not treat) to ensure Pr(DLT) =0 ?

Typical assumption: Pr(PFS >t [ d )% ind forallt




Computer Simulations: 3+3 A, 3+3 B, and CRM with p* = .25
were simulated under each assumed dose-toxicity curve.
1000 trials simulated for each (curve, method) pair.
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Selection Percentages Under C1

“3+3” algorithm B is much “3+3" algorithm A selects no
more likely to selectan || dose as the “MTD” over 40%
807 unsafe dose as the “MTD” of the time

/

B CRM
O03+3 A
Bm3+3B

025 033 069 079 084 088 None

Dose 100 200 300 400 500 600



Selection Percentages Under C2

701] “3+3 B” is much more
“3+3 A” is much more likely likely to select an unsafe
to select an ineffective dose dose as the “MTD”
as the “MTD”
40- B CRM
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Selection Percentages Under C3

“3+3 A" is more likely to “3+3 B” is more likely to

select a dose with select a dose with
ptox = .12 as the “"MTD” ptox = .30 as the “MTD”
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0 0 0.02 0.12 0.3 0.5 None
True Prob(Toxicity)

Dose 100 200 300 400 500 600



An Example of the Inherent Nuttiness of the CRM

The CRM with target p;* = .25 considers a dose d, with
p-(d,) = .30 superior to a dose d, with p(d,) = .05,
because

|.30-.25| =.05 < .20=|.05-.25 | %UsmgtheCRM
with target p;* = .25 implies that you believe it is
better to have 2 dose with 30% toxicity than a dose
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‘The Tragedy of Agent X' : A True Story

« At alarge, well known cancer center, a phase | trial
was conducted to optimize dose of Agent X, a
histone deacetylase inhibitor that enhances
cytotoxicity when combined with nucleoside
analogs: added to Fludarabine + Clofarabine +
Busulfan as a preparative regimen in allogeneic
stem cell transplantation for acute leukemia.

« 6 doses of X were studied using the TITE-CRM.

« Toxicity was defined, over 30 days of follow up, as
time to any of the very severe, very unlikely events

= Graft Failure

= Grade 4 or 5 (fatal) non-hematologic, non-infectious
toxicity, Mucositis, or Diarrhea

Grade 3 was not counted as a “DLT”



 Very few of the very unlikely DLTs were seen, so the TITE-

CRM quickly escalated to d=6, producing final sample sizes
(3, 3, 3,4,4,51) atdoses (1, 2, 3, 4, 5, 6).

To do survival analyses, doses {1,2,3,4,5} were combined
as a "‘Low” dose group (n=17), with dose 6 “High” (n=51).
Painful Surprise: The 51 patients who got the “optimal”

dose 6 had worse survival than the 17 patients who got

doses 1 - 5. o
P
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But what about covariate effects? Fitted piecewise
exponential Bayesian survival regression model

Posterior Estimates

Hazard 95% Credible Probability of

Ratio Interval a Harmful Effect
High vs Low Dose 2.74 0.82 -7.66 0.92
Age 1.03 0.98 - 1.09 0.89
MRD 3.63 1.17 -11.63 0.98
Not in CR1 0.77 0.21 - 3.46 0.36
High Risk 1.40 0.39 -5.52 074
AML 0.88 0.23-2.99 0.42
Comorbidity Score 1.05 0.78 - 1.40 0.67
Maintenance 0.16 0.03-0.85 0.02
Therapy
MUD 2.12 0.62-7.21 0.92
Graft Source = 0.38 0.06 - 1.77 0.14
Bone Marrow




Now What?

Based on the survival time data, it would be unethical to run a
phase Il or phase Il trial with Agent X at dose 6.

There Is far too little information to determine which of doses
1 — 5 might be “optimal” in some sense.

Running another dose-finding trial in this setting is far from
feasible, given the cost and time to run a second trial, and
numerous competing agents.

Unanswerable Question:

Was dose 6 of Agent X too much of a good thing?



Some Examples of
Early Treatment Efficacy Events

1. >50% shrinkage of a solid tumor within 4-8
weeks

2. Complete remission of leukemia within 42 days

3. Dissolve the blood clot that caused a stroke
within 24 hours

4. Engraftment of a stem cell transplant within 4
weeks



Three Examples of Nutty Flaws with the Phase |
(Toxicity Only) = Phase |l (Efficacy Only) Paradigm

d=1 d=2 d=3 d=4 d=5

Case | Pr(Toxicity) .05 .10 .25 .35 .50
1 Pr(Efficacy) .20 .50 .50 .50 .50

2 Pr(Efficacy) .20 25 .30 .60 .65

3 Pr(Efficacy) .00 .01 .01 .02 .02

3+3, or CRM with target p;* = .25, are most likely to choose
d=3 in all 3 cases because they ignore efficacy

Case 1: pe(2) = pe(3) = .50, but p(2) = .10 <.25 = p4(3)

Case 2: [pe(3) = .30, p+(3) = .25] vs [pe(4) = .60, p(4) = .35]

Case 3: All doses are inefficacious, with pg(d) < .02




Three Examples of Nutty Flaws with the Phase |
(Toxicity Only) = Phase Il (Efficacy Only) Paradigm

In Words: A phase | design that uses Toxicity but
ignores Efficacy when choosing an “optimal” dose
d, like the 3+3 or CRM, is very likely to . ..

Case 1: Choose a dose that is too high if the pc(d)
curve has a plateau

Case 2: Choose a dose that is too low if the p(d)
curve increases sharply for doses near the (Toxicity
based) MTD

Case 3: Fall to stop the trial early If all doses are
Ineffective with very small p:(d)




A Likely Catastrophe in Case 2

d=1 d=2 d=3 d=4 d=5
Pr(Toxicity) .05 10 25 .35 .55

Case 2 :
Pr(Efficacy) .20 25 .30 .60 .65

1. A 3+3 algorithm, or CRM with p* = .30, are most
likely to choose d=3 or d=2 because both
methods ignore Efficacy =

2. d=4 is discarded, despite the fact that it
DOUBLES the response rate from .30 to .60 -

3. Phase Il then shows that the agent at d=3 Is
“promising” =2
4. A large, expensive phase lll trial concludes

that the new agent at d=3 does not improve
survival. This is a disastrous false negative.




Expansion Cohorts
or
“There is No Design Like No Design”

1. Use a toxicity-based phase | design (3+3, CRM,
etc.) to determine an MTD.

2. Behave as if the MTD is known with certainty to be
the “right” dose (according to either explicit or
unstated criteria)

3. Treat a fixed number of patients (10, 50, 100, or
whatever) at the MTD.



Expansion Cohorts
or
“There is No Design Like No Design”

4. Do not bother with any experimental design, or
specific monitoring/stopping rules for either poor
safety or low efficacy

5. Once all patients have been treated, analyze the
data any way you like, if possible, cherry picking a
patient subset with a high response rate.

6. Use the data, and your analyses, to submit a New
Drug Application to the FDA.



Why Use Expansion Cohorts?

Usual Stated Motivation

Once the MTD has been “determined” treating more
patients at the MTD will give a more reliable estimator
of Pr(DLT | MTD), Pr(Response | MTD), and PK data

Since the MTD is “safe” treating more patients at the
MTD is perfectly ethical

Actual Motivation

It avoids designing a phase |l trial, especially futility
rules that might say a new drug isn’t any good

It pretends that the MTD is known with certainty to
be the “best” dose

It avoids the painful process of thinking
A statistician is not needed



Some Problems with Expansion Cohorts

1. With a typical phase | design, Pr(Toxicity | MTD) is
estimated very unreliably -

There Is a non-trivial probabillity that the MTD is too toxic,
since the sample size at the MTD is very small

2. No 3+3 algorithm has any criterion for “right dose.” It is just
a very vaguely described algorithm.

3. The CRM has the “optimal dose” criterion that
E{n (dose)|data} Is close to n* , but it ignores n-(dose).

4. Example:

What if the trial ends with 1/6 toxicities at the MTD and then 7
DLTs occur in the first 10 expansion cohort patients, for a total
of 8 / 16 (50%) toxicities.

Does any sensible physician want to treat 90 more patients at
a dose where 8/ 16 DLTs were observed ?



Expansion Cohorts:
A reductio ad absurdum

What if you observe O responses in phase | ?

Dose mg/m? | # Toxicities / # Patients | # Responses [ # Patients
100 0/3 0/3
200 1/6 0/6
300 216 0/6
400 — —

At the MTD of 200 mg/m? , where 0/6 responses were
observed, does any sensible physician really want to
treat 100 more patients at that dose?




Expansion Cohorts: Yet Another Problem!!

True Toxicity and Efficacy probabilities

d=1 d=2 d=3 d=4 d=5
ntrue 05 10 20 30 40
mtrue 05 10 25 35 70

* The 3+3, or CRM with target .20 to .30, are most likely to
choose d=3 or d=4, and much less likely to choose d=5.

» |f the MTD chosen in phase | is d=4, then an expansion
cohort of 100 patients are treated at a suboptimal dose with
ne"U¢(4) = .35, which is half n_"¢(5) = .70.



General Phase |-l Paradigm

1. Evaluate the effects of treatment regime p =
dose, dose pair, or (dose, schedule) on a 2- or 3-
dimensional outcome Y including both Efficacy
and Toxicity variables.

2. Choose optimal p for each new patient cohort
adaptively based on all data observed thus far.

3. Base the adaptive decisions on an explicit
criterion function ¢(p , data), such as an Efficacy-
Toxicity trade-off or posterior mean utility.



General Phase |-l Paradigm

4. Impose regime/dose admissibility rules based on
marginal rates of Toxicity and Efficacy.

5. Tailor the design (treatment regimes,
outcomes, sample size, cohort size, decision rules)
to the actual trial at hand.

6. Use computer simulation to calibrate the

design and establish frequentist operating

characteristics :

“It is better to kill computer generated patients rather

than real ones when calibrating design parameters.”
Peter F. Thall



Establishing a Prior

Y = outcome vector, including binary, categorical,
ordinal, or event time outcomes

Tt ="regime” = treatment, dose, schedule, (dose,
schedule), a multi-cycle regime

® = model parameter vector

¢ =fixed hyper-parameters: Usually 0, ~ N(u, c2),
Gamma(a, 3), or Beta(a, B) for each |.

Bayes Theorem : For likelihood f(Y | t, 0) and prior p(0 | &),
the posterior is

fO|Yy,. .., Y, 1,E)=cC (Y ]71,0)... f(Y,|7,,0)pO]E)




Establishing a Prior

General Strateqy

1. Elicit prior means of various probabillities.

2. Use the elicited means to solve for the means
Mas - Mp INE

3. Use prior effective sample size (ESS) and
preliminary trlal simulations to calibrate the hyper-
variances ¢4, . . ., 6,2in &



Accounting for both Efficacy and Toxicity

Dosel |No Efficacy| Efficacy
No TOX 45 .25
TOX .25 .05 .30
.30
Dose 2 | No Efficacy | Efficacy
No TOX 45 .25
TOX 05 ——> .25 .30
.50

Implication: Looking at Pr(TOX | d) is not enough.




Accounting for both Efficacy and Toxicity

1. Toxicity Only: Pr(TOX|d,) = Pr(TOX] d,) =.30
- d, ~d, (A usual phase | design’s conclusion)

2. Optimist: Define “Response” = [Efficacy, No TOX] =2
Since Pr(Response |d,) = Pr(Response | d,) = .25
- d, ~ d, (An optimist’s conclusion)

3. Reality: Pr(TOX]|d,) = Pr(TOX| d,) =.30 and
Pr(Efficacy|d,) = .50 > .30 = Pr(Efficacy| d,)
—> d, obviously is MUCH MORE DESIRABLE than d,

But . .. how should one quantify dose desirability?



Desirability: Efficacy-Toxicity Probability Trade-Offs
(Thall and Cook, 2004, Thall et al., 2014)

Patient Outcome: Y. = I(Efficacy) and Y- = I(Toxicity)
ne(d,8) = Pr(Efficacy | d,6)
n-(d,8) = Pr(Toxicity | d,8)

Bivariate model for Pr(Y-=a, Yc=b | d, 8)
fora,b=0,1

Non-informative prior on @ with specified prior
effective sample size close to 1




Dose-Finding Based On Efficacy-Toxicity Trade-Offs
(Thall and Cook, 2004, Thall et al., 2014)

The physician must specify N, .., cohort size,
« afixed lower limit ny* on nk(d,6)

 a fixed upper limit t-*on 7(d,H)

» several equally desirable fixed (ng, 7;) pairs

A dose d Is Unacceptable if

1) itis likely that d is unsafe :
Pr{ n-(d,8 > n* | data } > .90, or

2) Itis likely that d is inefficacious :
Pr{ nc(d,d < n* | data } > .90




EffTox: Dose-Finding Based On Efficacy-Toxicity Trade-Offs
(Thall and Cook, 2004; Thall, et al., 2014)

Goal: Choose the “best” acceptable dose
How “best” is defined constructively :

= Three equally desirable fixed (mng, ;) pairs are used to
define Efficacy-Toxicity trade-off (“desirability”) contours.

= The current most desirable acceptable dose is chosen for
each new cohort.

= The final most desirable acceptable dose is selected at
the end of the trial.




Establishing a Target Trade-Off Contour

1. Specify three equally desirable probabillity pairs
T = (Mg, 0), " = (1, mp 1), 75* = (ngg, Mg 7). With

ﬂ-b(ﬂ_E!‘ WT) = 1- ||(?TEtWT) - (lU)HP —

G ()Y
:«TJ*E!I—l W;EE—U

2. Use bisection method to solve for p with ¢(nz g, n37) =0

3. The target contour is C, where ¢(w) = 0. For real number z,
C, = the contour of n values in [0, 1]°> with ¢(w) = z.



Target Efficacy -Toxicity Trade-Off Contour
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Use (' to Generate a Family of Trade-Off Contours

8 =0.105 5=0.135 §=0.174

1

8=0.223
0.8 -
& =0.287
0.6+ 8 =0.368
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8 =0.472
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\Which of these two doses Is more desirable? \

1 5=0.105 5=0.135 5=0.174
5=0.223
0.8 dose,
5=0.287
\ 5=0.368
0.6 dosel ® b
7T
T \ 5=0.472
0.4
¢ 5 = 0.607
0.2
5=0.779
0 . s =1
0 0.2 0.4 0.6 0.8 1
7T



Which of these two = pairs iIs more desirable?

1

0.8F

0.6

0.4F

0.2F

8 =0.105

5=0.135 §=0.174
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& =0.223
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8=0.472

8 = 0.607

8§=0.779



Trial Conduct

1) Physician chooses starting dose
2) Adose is Acceptable if
a) It has both acceptably low toxicity and acceptably high
efficacy, or
b) Itis the next higher untried dose and has acceptably
low toxicity
3) Treat each cohort at the most desirable acceptable dose

4) Do not skip untried doses when escalating

5) If no dose is acceptable =» Stop the trial and do not select
any dose (combined futility and safety monitoring)

6) At the end, select the most desirable acceptable dose



Re-Visiting Doses

The dose chosen for the next cohort may be
higher than, the same as, or lower than
the current dose

After de-escalation due to excessive toxicity or
low efficacy, If subsequent outcomes at a lower
dose are sufficiently safe and efficacious, then

the algorithm may re-escalate

This is what makes any reasonable adaptive
dose-finding method less stupid than any
3+3 algorithm



Pathological Trade-Off Contours: A Decade of Dysfunction

Efficacy-Toxicity tradeoff contour
1.0

0.9+

Prob( toxicity )
o o o = =
n @ i bl ®

o
o

0.0 ; : 1 : : : : : t
00 01 02 03 04 05 06 07 08 09 10
Prob( efficacy )

For ng > .60, this contour requires a HUGE increase in n for a
small increase in n; = In scenarios where ng(d) increases
steeply with d and n(d) is low, the algorithm gets stuck -

A much steeper contour is needed.



A Phase I-Il Trial in Advanced Prostate Cancer

d=1, 2, 4, 6.6, 10 mcL/kg of Magic Agent ( 5 dose levels )

Elicited prior means u:(® = (.20, .40, .60,.80, .90) and
u® = (.02, .04, .06, .08, .10),  prior ESS = .90

N, ., =39, cohort size = 3, first cohort treated atd = 1
.30 = Upper Limit on n(d), .50 = Lower Limit on ng(d)

Target Contour Trade-off pairs giving pathological contours
(e, m1)* = (.50, 0), (.70, .10), (1, .30)

Target Trade-off pairs giving non-patholoqgical contours
(e, m7)* = (.50, 0), (.70, .25), (1, .64)




Bad Contour : Good Contour :
Not Steep Enough Steep Enough

Efficacy-Toxicity Trade-off Contour Efficacy-Toxicity Trade-off Contour

o
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Bad Contour: Not Steep
Enough The algorithm gets
stuck at the middle dose =4,
and is unlikely to escalate to a
more desirable higher dose

Good Contour :

Steep Enough

H Pr(Toxicity)

H Pr(Response)
H Desirability

B % Select

Dose =10

Dose=1 Dose =2 Dose=4 Dose = 6.6

H Pr(Toxicity)

H Pr(Response)
H Desirability

B % Select

Dose=1 Dose =2 Dose =4

Dose = 6.6

Dose =10




Prior Effective Sample Size (ESS)
(Morita, Thall and Mueller, 2008)

A fundamental guestion in Bayesian statistics:

How much information is contained in the prior?
Intuitive Motivation for ESS : Saying Beta(a, b) hasESS =a +b
implicitly refers to the well-known fact that

0 ~ Beta(a, b)and Y | 6 ~ Binom(n, 6) -
O0|Y,n ~ Beta(a+Y, b+n-Y) whichhas ESS=a+Db+n

But for many commonly used parametric Bayesian models
It Is not obvious how to determine the ESS of the prior.



Prior Effective Sample Size (ESS)
(Morita, Thall and Mueller 2008)

Example:
Usual normal linear regression model,
ECY | X) =Bo + By X

var(Y) =c?2> 0=y, B;,0%) with
By, By ) ~ BivNormal, o2~ Inverse ¥?

For prior p(0 | ), the hyperparameter has
dim(§) = 2+3+1 = 6.

What iIs the prior ESS for given ¢ ?



Prior Effective Sample Size (ESS)
(Morita, Thall and Mueller 2008)

A simple algorithm: Use the method of moments

For each of several probabillities
m, (d, 0),...,m(d,0), approximate prior{r; (d, 0)}
by a Beta(a, b) so

E {m(d,0)| &} = p = al(at+h)

var { m;(d, 0) | £ } = 6% = pu(1- p)/(a+b+1) =>

ESS ~a+b = u(1- p)/ o? -1
This gives k ESS values. Just use their mean.




An Overly Informative Prior

Fora,b=0,1, x=dose,

Tap (X, 0)=Pr(Yc=a, Y;=Db| X, 0)

= mA(Lome) R (L) P+ (-1)2 (L) me(L-my) (€¥-1)/(e¥+1)
with logit ©(x,0) = pr + XBr, logit mg(X,0) = pe+ XPe 1+ XPe
Model parameters: 0= (ur, Br, Mg, Be1s Beoy W), Pp=6

The model for the allogeneic stem cell transplant trial in Thall

and Cook (2004) has prior ESS = 8.9, equivalent to 3
cohorts of patients!! This prior was far too informative




A Strategy for Determining Priors in the Eff-Tox
Regression Model

Fix the prior means Hue, L35 15 BBg o0 Bur s B3, and fiy
The new EffTox V5.0.1 GUI asks you to input :
1. Prior means of n-(d,0) and n(d,0) for each d

2. The prior mean ESS that you desire for the n-(d,0)
marginal and also for the n(d,0) marginal

The EffTox program computes the hyperparameters
that give your desired ESS values.



Using ESS to Calibrate the Prior:
Applying the Three Bears Criterion

(N, =39, €=3)

Dose
1 2 4.4 6 10
Prior | Desira- | 41 57 96 78 66 | None
ESS bility
E?g —3 10 | % Sel 0 0 15 68 17 0
Right—> 90 | %Sel | 0 1 45 | 38 | 11 5
Too _& 02 | % Sel 0 4 26 18 34 17

Small




Where to find the latest version
EffTox V5.0.1 of the program

https://blostatistics.mdanderson.orqg/SoftwareDownload



https://biostatistics.mdanderson.org/SoftwareDownload

Example of the GUI

Applying the Three Bears Criterion for N

=39andc=3

max

ET EffTox dose-finding - Untitled Simulation.sim

File  Help

Mode! Parameters | Simulation Setup | Simulation Run | Trial Conduct |

Dose 'x' is acceptable if . .

|Taxicit',r

Efficacy

Pr| mp(x, 0) <mp* |data] 2 pry
np* 030000 2

Pty 010000 2

Prlm(x. 6) > m.™ [data ] 2 p |
m* 050000 2

Pgp 010000 *

Trade-off Function Parameters

Doses
Mumber: 5 =
LInits: mclLkg
Values:
Starting
value:

Prior Hyperparameters

Calculatar...

Patients in Trial

39

Max sample size:

Cohort size:

g TURER . ou oy

Calculatar...

Emcacy-Toxicity Trage-uil Comous Elicited mean Elicited mean p
P(T) P(E)
‘mu_T elicited’ 'mu_E elicited"
Dosel |.0200 2000
/ Dose2 | .0400 4000
V4 Dose3 :.0600 6000
yd Dose4 | .0800 8000
/ Dose5 .1000 9000




An EffTox Phase I-Il Trial of Lenalidomide for
Myeloma Patients Undergoing Autologous Stem
Cell Transplant

Preparative regimen = fixed dose of IV melphalan + oral
Lenalidomide at one of the doses { 25, 50, 75,100 } mg/m?
on each of days -8, -7, ..., -2 before transplant

Toxicity = Regimen-related death, graft failure, or grade 3,4
atrial fibrillation, deep venous thrombosis, or pulmonary
embolism within 30 days post transplant

Efficacy = Alive and in CR at day 30 post transplant

.20 = Upper Limit on nt(x), .15 = Lower Limit on ng(X)
Trade-off pairs (ng, 7)) = (.15, 0), (.30, .15), (1, .50)
N, = 60, cohort size = 3, first cohort treated at 25 mg/m?

m



Lenalidomide Autologous SCT Trial:
Simulation Scenario 1

M Pr(Toxicity)
M Pr(Response)
M Desirability
B % Selected

Dose = 25 Dose =50 Dose=75 Dose = 100




Lenalidomide Autologous SCT Trial:
Simulation Scenario 2

M Pr(Toxicity)
M Pr(Response)
M Desirability
B % Selected

Dose = 25 Dose =50 Dose=75 Dose = 100




Lenalidomide Autologous SCT Trial:
Simulation Scenario 3

M Pr(Toxicity)
M Pr(Response)
M Desirability
B % Selected

Dose = 25 Dose =50 Dose=75 Dose = 100




Simulation Comparisons of 3+3, CRM, and EffTox
Dose Selection %

Dose Level
dl dg dg d4 d5 None
Scenario 1 True g (d;) 05 .10 =30 .55 .60
True 7p(d;) 10 .20 [.35 | .40 .60
Trade-oft 34 32 38|58 | 48

r_l
P_L

N=30 3+3 A 29 39
3+3 B 19 39
CRM 2 38
EffTox 2 11

11
13
28 25

o = O

o o Ut

N=45 CRM 0 36
Eff Tox 1 8

37 16 | 10

N=60 CRM 0 34
EffTox 0 7

<o w(cﬂ w(q;wr—t
| ool ) o\l Jou o
—_
o
}_l
o

= CRM has target .30 for n-
= EffTox has upper limit .40 on =+ and lower limit .20 on ¢




Scenario 2 True 7g(d;) 30 .60 .65 .70 .75
True 77 (d;) 20 .25 45 .60 .70
Trade-off 48 81 66 59 57

N=60 343 A 30 31 7 0 0 31

3+3 B 31 38 15 1 0 15

CRM 9 70 17| 0 0 4

Eff Tox 14 54 28| 3 1 1
Scenario 3 True 7g(d;) 05 .10 .30 .50 .70
True 77 (d;) 05 .10 .20 .30 .35
Trade-oft 37 38 48 61 86

N=60 343 A 10 28 31 16 O 15

3+3 B 5 19 33 24 6 13

CRM 0 0 |21 40 38 0

Eff Tox 0 3 |14 13 68 1
Scenario 4 True 7g(d;) 01 .02 .04 .06 .07
True 77 (d;) 12 .15 .30 .50 .55
Trade-oft 30 30 24 18 17

N=60 343 A 18 38 27 3 0 15

3+3 B 15 32 38 9 1 6

CRM 0O 131771 9 0 1

EffTox 0 0 1 3 3 93




Comparing Dose Selection % for Four Methods:

Simulation Results in One Scenario (N= 60 patients)

80

70

60
50

40

30

20

10

0 .

3+3 A 3+3 B CRM .30

Dose Finding Methods
that Ignore Efficacy

EffTox

TcEtrue nTtrue
M Dosel | .05 .05
W Dose2 | 10 .10
Dose3 | 30 | .20
W Dosed4 | 5o 30
mDose5 | 7p 35
B None




Utility-Based Phase |-l Trials

Medical Practice
- Efficacy and Toxicity both matter for the patient -
Any reasonable statistical method should use both.

« Utilities and trade-offs underlie all medical decision-making
—> They are natural tools for statistical decision-making.

Advantages of Using Utilities

1. U(Toxicity, Efficacy), or U(Tox, Eff,, Eff,) maps a
multidimensional outcome to a 1-dimensional criterion that
 quantifies risk-benefit trade-offs

e cah be used to make decisions about doses, or more
generally about treatments.

2. In practice, physicians do not write down their utilities,
unless they are elicited by a statistician designing a clinical
trial. Physicians LOVE to give their numerical utilities. So,
their utilities now are made EXPLICIT.




Computing Mean Utility

Toxicity
No Yes
No 40 0
Efﬂcacy TCOO =.40 TCOI =.10
Yes 100 70
Ty =.30 | m;;=.20

Mean Utility
= U(0,0) my, + U(0,1) my; + U(L,0,) m;, + U(1,1) m;

A0x .40 + Ox.10 + 100x.30 + 70x.20
16+0+30+14 = 60



Toxicity

No Yes
No 40 0
Efficacy Moo =2 | T =?

Yes 100 70

Mp=2? | =7

But we do not know (m,, Ty, 1o, T;;), SO We write down
a Bayesian model with parameters 0

n(a,b | d,0)=Pr(Y;=a,Y,=b | d,0) fora,b=0or1l,

and use it to compute the mean utility of each d :

U(d, 0) = n(1,1|d,0)U(1,1) + =(1,0]|d, 0)U(1,0) +
(0,1 | d,0) U(0,1) + =(0,0]| d, 6) U(0,0)

As dose-outcome data are observed during a clinical trial,
0 and U(d, 0) estimated, for making decisions.




The Meanings of “Mean Utility”

But we do not know 6 = We apply Bayesian Statistics to
decide which dose is “optimal,” as follows:

The mean utility of dose d given parameters 0 is

u(d, 8)=E{U(Y) | d, )} = 2, U(y) P(Y=y | d, 6)

The posterior mean utility of dose d, given the data, is
é(d, data)=E, {u(d, @) ]| data}

The dose with largest posterior mean utility is given to the
next cohort of patients.

As new data are obtained during the trial, we repeat this
computation, learn sequentially about the dose-utility
function, and the “optimal” dose may change.




Adaptive Randomization to Deal With Stickiness

Well Known Fact

Any sequentially adaptive statistical decision rule
based on an optimality criterion may risk getting
stuck at a sub-optimal (locally optimal) action. If so,
one fails to adequately explore the action space and
identify a truly optimal action: “Stickiness”, or the
“Exploitation versus Exploration” problem.

Practical Solution

After an in initial burn-in, use sequential Adaptive
Randomization (AR): Treat each new cohort at dose

d chosen randomly with probability proportional to
¢ (d, data)




Utility Based Sequential Decision Making

1) Goal: Given a set of experimental treatment

2)

3)

regimes {p,, . . ., p} (doses, schedules, (d,s)
combinations, etc.), sequentially choose a “best’
regime for each successive cohort of patients, Iin
real time, based on 2 or 3 or more Efficacy and
Toxicity outcomes

Utilities : Use elicited utility U(Efficacy, Toxicity), to

choose each cohort’s regime

Bayesian Computations: Map (p,data) to the

posterior mean utility ¢ (p,data) of each treatment
regime p, or find the regime p that has largest

7 (p, data) = Pr [ u(p, ) = max {u(p*, 0)} | data |



Utility Based Sequential Decision Making

4) Maximize either ¢(p,data) or z(p,data) to
choose the best p

5) Acceptability : Restrict selections to t that are
acceptable, in terms of safety and efficacy. If all ©
are “unacceptable” then stop the trial.

6) Sequential Adaptive Randomization (AR) :

After an initial burn-in, repeatedly randomize
among doses with u(p,data) close to the maximum,
to avoid getting stuck at a suboptimal regime.




A Phase I-Il Pediatric Radiation Therapy Trial

Diffuse Intrinsic Pontine Gliomas (DIPGS)
» Very aggressive brain tumors

= No treatment with substantive anti-disease activity
exists

» Radiation Therapy (RT) is standard treatment,
out Is mainly palliative

= RT dose-toxicity & dose-efficacy profiles are not
well understood

Subjects: Children, median age = 5 years, with DIPGs

Three RT dose levels: “Biologically Equivalent Doses”
In Gy, given serially per a fractionation schedule




A Phase I-Il Pediatric Radiation Therapy Trial

Efficacy = # improvements in :

* Clinical Symptoms

« Radiographic Appearance of the Tumor
« Quality of Life

- Y= 0,1,2,0r3

Toxicity Defined in terms of fatigue, nausea/vomiting,
headache, skin tOXICItIeS blindness, brain edema or
necrosis with Y+ = Low, Moderate, High, or

Severe

Both Efficacy ( Yz ) and Toxicity (Y+ ) are scored by
day 42
Number of (Efficacy, Toxicity) outcomes = 3x4 = 12



Elicited Numerical Joint Outcome Utilities
of 16 possible outcomes
Toxicity Severity
Low Moderate High Severe

Efficacy | 0 50 25 10 0
ore 11 | 8 | s0 | 15 5

2 92 60 20 7

3 100 75 25 10

U(Toxicity, Efficacy) is used to make decisions adaptively in
the trial (“learn-as-you go” )

1) Decide which radiation does are acceptable

2) Choose best dose for each cohort of 3 children: “Best”
means “Has the highest posterior (mean) utility”



Some Properties of the Utilities

Toxicity Severity
Low Moderate High Severe
Efficacy 0 50 @ 10 0
Score 1 85 50 15 5
2 92 60 20 7
3 100 75 @ 10
Question:

Why not just use “DLT” = {High, Severe} and apply a simple
dose finding method (e.g. “3+3” or “CRM”) ?

Answer:

U(0,Moderate) = U(3, High) = 25 = Scoring these two
outcomes as “No DLT” and “DLT” makes no sense!




Bivariate Ordinal Dose-Outcome Model

Y, = Efficacy index {0, 1, 2, 3}

Y, = Toxicity index {0, 1, 2, 3} (low,mod,high, severe)
- 16 possible (Efficacy, Toxicity) outcomes

X = dose, Indexed by 1,2, ..., J,

Tyx = Pr(Yy=y[x, 0) fork=1,2



Bivariate Ordinal Dose-Outcome Model

Nioyo = Pwe /(1 4 Prve)

o0e = 1 — Aptla
Tklx — )\k‘.,l,:r. — )‘k,l,m)\fs,i},r
Tko2r — )\k,l,:r)‘k,‘;‘,;r — )\L:,l,a*)\k.,ﬂ,m)\k,f%,:r

k3. — )\k‘.fl?:r. Ak,?,a‘)\kﬁ&m-



Establishing Priors

Elicited prior mean outcome probabilities for the RT trial

Y, = Toxicity Severity Y5 = Efficacy Score

xr BED Low Moderate High Severe 0 1 2 3

I 40.00 0.65 0.20 0.12  0.03 0.20 0.40 0.35 0.05

bo

45.76 0.55 0.25 0.15  0.05 0.10 0.30 045 0.15

3 53.39 0.40 0.30 0.23  0.07 0.10 0.20 0.50 0.20

Computing Prior Hyperparameters

24 elicited probabilities, p=19 hyperparameters :
1. Estimatel9 prior means from the elicited probabilities

2. Calibrate the hyper-variances to ensure small overall prior
ESS



Radiation Therapy Trial Conduct

Approximating each prior(n, ,,) as a beta 2>
Prior ESS values were 0.31 to 0.70, with mean 0.42.

A 10% limit was imposed on Pr(High or Severe toxicity) =

X unacceptably toxic if Pr(m,3 > .10 | D,) > .80

= N, = 30. Treat the first 3 pats. at x =1, then adapt, do not
skip dose level x =2 when escalating at the start.

= AR applied for doses with posterior mean utility close to
maximum

» Posteriors computed using MCMC with Gibbs sampling.



Operating Characteristics of the RT Trial Design

Scenario 1 Scenario 2
= =
(= o —
B Utility
=1 B % Selected @
E # Patients
o _| =2 _|
w w
=t =t
o _| = |
('] (']
o o .
1 2 3 Mane 1 2 3 Mane
Dose Dose
Scenario 3 Scenario 4
= =
0 — 0 —
W Utility
=- W % Selected =
E # Patients

o _| =2 _]

(=] (=]

=T =T

= _| =2 _]

(3] (3]

o _ I o __mm

1 2 3 Mane 1 2 3 Mane

Dose Dose



Operating Characteristics of the RT Trial Design

40 G0 80 100

20

40 G0 80 100

20

Scenario 5

B Utility
B 9% Selected
E # Patients

L1

Dose
Scenario 7

B Utility
B % Selected
B # Patients

LLL

Dose

— .

Mone

_

Mone

40 G0 a0 100

20

LLL

40 G0 80 100

20

Scenario 6

All RT doses
are to toxic

Mone
Dose
Scenario 8
L L o
1 2 3 Mone
Dose



Conclusions About Utility-Based Designs

Utilities
Using joint utilities of (Efficacy, Toxicity) Is vastly
superior to using Toxicity only and ignoring Efficacy.

Adaptive Randomization

Randomizing among doses with posterior mean utility
close to the maximum is insurance against cases
where the greedy algorithm gets stuck at an inferior

dose.

Safety and Futility

The marginal probabillity rules work extremely well to
screen out unsafe or ineffective doses




A Clinical Trial Treatment Development Design Hierarchy

Statistical Design Characterization IQ
Phase I-1l Using Efficacy- Honest, Sensible, and 120
Toxicity Trade-Offs or Useful, But Not A Panacea
Utilities
Phase | Using A Model- Reasonably Intelligent, 100
Based Toxicity-Only But Flawed Because
Method Efficacy is Ignored
Phase | Using Dumb As a Sack of 80
Any “3+3” Algorithm Hammers.
Should Be lllegal.




Bayesian Designs for Phase |-l
Clinical Trials

A Half-Day Short Course
2020 ASA Biopharmaceutical Section Regulatory-Industry Statistics
Workshop

Peter F. Thall and Ying Yuan
Department of Biostatistics
M.D. Anderson Cancer Center

Textbook: Yuan, Nguyen, and Thall
Bayesian Designs for Phase I-1l Clinical Trials
Chapman & Hall/CRC Biostatistics Series, 2016

— .,
Lecture Schedule ( Eastern Standard Time )

Lecture 1: 2:00 — 2:50 Thall
+ Problems with the Phase | > Phase Il paradigm
* Phase I-ll designs

( 5 minute break)

Lecture 2: 2:55 - 3:40 Thall
» The EffTox phase I-Il design
+ Utility based phase I-1l designs

(10 minute break)

Lecture 3: 3:50 — 4:45 Yuan

* Model assisted phase I-Il designs

» Phase I-ll designs for immunotherapies
(/5 minute break )

Lecture 4: 4:50 —5:30 Yuan
» Tissue agnostic phase I-ll designs
» Handling late onset toxicity and efficacy

9/24/20
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OBD vs. MTD

m Fortargeted and immune therapies, the
conventional assumption that efficacy increases
with the dose may not hold

e Efficacy often plateaus or even decreases at high
doses

e To obtain optimal treatment effect, immunotherapy
and targeted agents are not necessarily
administered at the maximum tolerated dose (MTD)

m The appropriate objective of dose finding trials
for immunotherapy and targeted therapy is to
find the Optimal Biological Dose (OBD)

)
OBD vs. MTD

Require a paradigm shift !

1.0
1
1.0

08
T
08

OBD
MTD

06
1
T

06

Efficacy

T
0.4

Ayqeqoud Aoeoiy3

04
1

Toxicity probability

Maximum acceptable

|
| At
| toxicity

02
T
02

0.0
L
T

0.0

o
(] —_——
w -
N
o
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Elements of phase I-ll trial design

1. Toxicity and efficacy outcomes that characterize potential
risks and benefits of the treatment being studied

2. Risk-benefit trade-off criterion that characterizes and

quantifies the trade-off between efficacy and toxicity for each
dose

3. Statistical model describing the dose-toxicity and dose-
efficacy relationships

4. Adaptive decision rule that determines the best dose for the
next cohort, based on the (dose, toxicity, efficacy) data from
all previous patients

5. Admissibility rules that protect patients in the trial from
unacceptably toxic or inefficacious doses

6. Stopping rule that terminates the trial early if the all doses
being considered are unacceptably toxic or inefficacious

Yan, F., Thall PF, Lu KH, Gilbert MR and Yuan, Y. (2018) Phase I-Il clinical trial design: A state-of-the-art paradigm for dose finding.
Annals of Oncology , 29, 694-699.

Phase [-II trial design

Treat the first
cohort of patients
at the prespecified
starting dose

Collect both

efficacy and
ﬁ toxicity data ﬁ

Select the optimal
dose for the next
cohort of patients

Fit dose-efficacy
and dose-toxicity
models

Stop the trial and
select the optimal
dose

s maximum
sample size
reached?

Terminate the
trial early

Update dose
acceptability and
dose desirability by
including the most
recent data

Yan, F., Thall PF, Lu KH, Gilbert MR and Yuan, Y. (2018) Phase I-Il clinical trial design: A state-of-the-art paradigm for dose finding.
Annals of Oncology , 29, 694-699.

9/24/20



Chapman & Hall/CRC Biostatistics Series

Bayesian Designs
for Phase I-lI
Clinical Trials

Efficacy

Toxicity

Ying Yuan
Hoang Q. Nguyen
Peter F. Thall

Comrigtten Mstvrisl

Model-Assisted Phase I-ll Trial Designs
= U-BOIN design
m BOIN12 design

Zhou, Y., Lee. J.J. and Yuan, Y. (2019) A Utility-based Bayesian Optimal Interval (U-BOIN) Phase I/Il Design to Identify the
Optimal Biological Dose for Targeted and Immune Therapies. Statistics in Medicine, 38(28):5299-5316.

Lin R, Zhou Y, Yan F, Li D and Yuan Y (2020) BOIN12: Bayesian Optimal Interval Phase I/l Trial Design for Utility-Based Dose
Finding in Immunotherapy and Targeted Therapies, JCO precision oncology, minor revision invited

9/24/20



JCO?® Precision Oncology

An American Society of Clinical Oncology Journal

Model-Assisted Designs for Early-Phase Clinical

“Trials: Simplicity Meets Superiority

Ying Yuan, PhD?; J. Jack Lee, PhD*; and Susan G. Hilsenbeck, PhD?

MITAII

.)I‘W!]_[l‘

Model-assisted designs refer to a class of design that uses a statistical model
to derive the design for efficient decision making, similar to model-based design;
but like the algorithm-based design, its dose escalation and de-escalation rule
can be pre-determined before the onset of the trial, and thus can be implemented
as simple a way as the algorithm-based designs.

_—
U-BOIN design

Start at the
pre-specified
starting dose
v
Compute the empirical DLT
. rate (it; ) at the current dose j

s2 R 22
v within (2, 4) & v

S 1 Escalate the Stay at the De-escalate the
tage g .
dosetoj+1 current dose j dosetoj—1
v
[ Treat the next cohort of patients ]
* N
Does the number of patients on o
any dose reach s,?
Yes
v
Based on data in both Stages | and I, Yes Stop the
> estimate dose utility, and > "':' &no
determine set (A). Is A empty? ose
selected
No
v
s the empirical DLT rate at the ves mEsga‘a‘e
highest tried dose (j°) < 1,7 © dose to
No -
Stage Il v

admissible dose with the largest

Treat the next cohort of patients at the
estimated utilty

v

- Zhovu, Y., Lee. J.J. and Yuan, Y. (2019) A Utility-based
Does thy ber of t Ye
No ey dosercach o Y +((saacen ] Bayesian Optimal Interval (U-BOIN) Phase Il Design
the total sample size reach N? to Identify the Optimal Biological Dose for Targeted
and Immune Therapies. Statistics in Medicine,
38(28):5299-5316.

FIGURE 1 Diagram of the U-BOIN design

9/24/20
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Toxicity and efficacy outcomes

m Consider a phase I-ll trial with J prespecified doses

m LetY; =0,--,Q — 1 denote a O-level toxicity
endpoint, where a higher level represents a more
severe toxicity

m LetY; =0,:--,R — 1 denote the R-level efficacy
endpoint, where a higher level represents a more
desirable response

m (Y, Yy) can be equivalently represented by a
single variable Y with k = RXQ levels
e (no tox, eff), (no tox, no eff), (tox, eff), (tox, no eff),

s
Efficacy-toxicity model

m Define mj, = Pr(Y = k|d = j), where d is the
dose level
m We assume that Y follows a Dirichlet-
multinomial model
Y = k|d = j ~ Multinomial(mjq, -, Tjg)
(njl, ., an) ~ Dirichlet(aq, -, ag)

where YX_, a, = 1 to have a vague prior with prior
sample size of 1.

9/24/20
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Efficacy-toxicity model

m At an interim decision time, assume that n;
patients have been treated at dose j, among
which n; patients had outcome Y = k.

= Given the interim data D; = (n;4, -+, njx), the
posterior is

(njl, ---,an)|Dj ~ Dirichlet(a; + njq, -, ax + njg)

Risk-benefit tradeoff

m Use utility to measure the desirability (i.e., risk-
benefit tradeoff) of the doses

ol oty | Resowe |
No

Yes /PR

(YeE=0) (YeE=1) =2)

No (Y No(Yr=0) Y, =30 P, =100 =100
Yes ( Yes (Yr=1) Py =0 3 =50 =60

9/24/20



Utility

m Let i, denote the utility ascribed to outcome Y = k, with
;=100 (most desirable) and =0 (least desirable)

m  The true mean utility (i.e., desirability) for dose j is given

by
K
U; :::E:‘Pkﬂyk
=1

m  The OBD is the dose with the highest desirability
m  The estimate of desirability is given by

K
O = > i (plD))
k=1

Why utility?

Theorem An alternative approach of quantifying the
desirability of dose j based on the marginal probability of
toxicity pr ; and the marginal probability of efficacy pg ;, i.e.,

, —
U] - pE,j _WpT,j,

is a special case of the utility approach with ¥, + 13 = 100

No (Ye=0) Yes (Ye=1) T
No (Yr=0) 50 100 &) |YiTPEj TP
Yes (Yr=1) 0 50

Lin R, Zhou Y, Yan F, Li D and Yuan Y (2020) BOIN12: Bayesian Optimal Interval Phase /Il Trial Design for Utility-Based Dose
Finding in Immunotherapy and Targeted Therapies, JCO precision oncology, revision invited

9/24/20
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Steps to elicit utility

1. Fix the value of the utility for the most desirable
outcome Y = 1 as y; = 100, and the least desirable
outcome Y = K as g = 0.

2. Ask clinicians to use these two utilities as a reference to
score the utility values y,, -+, x_, for the other K — 1
possible outcomes Y = 2,---, K — 1 to quantify the risk-
benefit trade-off under each outcome.

No (Ye=0) Yes (Ye=1)
No (Yr=0) 30 100
Yes (Yr=1) 0 50

_—
Elicit utility (cont.)

m  One possible criticism for using the utility values
is that they require subjective input. However,
we are inclined to view this as a strength rather
than a weakness.

m This is because the utilities must be elicited
from the physicians planning the trial, and thus
their numerical values are based on the
physician's experience in treating the disease
and observing the good and bad effects.

9/24/20
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Elicit utility (cont.)

m The process of specifying the utility requires
physicians to carefully consider the potential
risks and benefits of the treatment that underlie
their clinical decision making in a more formal
way and incorporate that into the trial.

m In addition, our simulation study and previous
studies show that the design is generally not
sensitive to the numerical values of the utility as
long as it reflects a similar trend.

_—
Dose admissibility criteria

m Let ¢ denote the upper limit of the toxicity rate,
and ¢ denote the lower limit of the efficacy
rate, specified by physicians.

m Dose j is defined as admissible if the following
two criteria are satisfied

(Safety) Pr(m; < ¢r|D) > Cr
(Efficacy) Pr(mg > ¢g|D) > Cg

where C; (e.g., = 0.05) and C; (e.g., = 0.1) are
prespecified probability cutoffs.

9/24/20
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U-BOIN design

m U-BOIN is consisted of two seamlessly
connected stages

m Stage |: dose escalation based on toxicity. The
objective is to quickly explore the dose space to
identify a set of admissible doses that are
reasonably efficacious and safe

m Stage II: adaptively allocate patients to the
estimated OBD based on the toxicity and
efficacy data accrued from both stages | and Il

Stage I: dose escalation using BOIN

Start at the
pre-specified
starting dose

v

Compute the empirical DLT
rate (i r) at the current dose j

<2 L >
v within (A, 24) & -
S I Escalate the Stay at the De-escalate the
tage . .
dosetoj+1 current dose j dosetoj—1
Target DLT rate (¢7)
Boundaries 0.15 0.20 0.25 0.30 0.35 0.40
A, (escalation) 0.118 0.157 0.197 0.236 0.276 0.316
A4 (de-escalation) 0.179 0.238 0.298 0.358 0.419 0.480
\ any dose reach s, ? /
Yes

 J
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Stage Il identify OBD

.

Based on data in both Stages | and |l Yes S,to&the
estimate dose utility, and mz no
determine admissible set (4). Is A empty? ose
selected
No
\d
Is the empirical DLT rate at the Yes thEsccjaIatet
highest tried dose (j*) < 4,7 ej‘ T’f 0
No
Stage Il v
Treat the next cohort of patients at the
admissible dose with the largest
estimated utility
v
Does the number of patients on
any dose reach s, or » | Select OBD
the total sample size reach N?

Two-stage dose-finding algorithm

Start at the
pre-specified
starting dose

v
Compute the empirical DLT
rate (it; ) at the current dose j

e >4

v within(l,2q) v

Escalate the Stay at the De-escalate the
dosetoj+1 current dose j dosetoj—1

=2

Stage |

—

v

[ Treat the next cohort of patients ]

v
Does the number of patients on
any dose reach s,?

No

Yes

Based on data in both Stages land Il, ) Yes [ StoPthe
estimate dose utilty, and

determine admlssnbla set (4). Is A empty?

Is the empmcal DLT rate at the Yes mEsjalate
highest (ned dose (j°) < 4.2 o dose 0

Treat the next oohon of patients at the ]

Stage Il

admissible dose with the largest
estimated utility

N Does the nurnbsr of patients on Yes
. any dose reach s, or »| Select OBD
the total sample size reach N?

FIGURE 1 Diagram of the U-BOIN design
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“Simplicity is
the ultimate
- sophistication.”

Leonardo da Vinci

_—
Stage | decision table

Decision The number of patients treated at
the current dose
3 6 9 12
Escalate if No. of DLT <= 0 1 1 2
De-escalate if No. of DLT <= 1 2 3 4
Eliminate if No. of DLT >= 3 4 5 6

9/24/20
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Stage Il decision table

Table 2. Utility table when 3 patients are treated on a dose

#Ef  #Tox #(Eff=1,Tox=0) Utility #Ef  #Tox #(Eff=1,Tox=0) Utility
<1 Any Any 0 2 1 2 61.2

1 0 1 51.2 2 2 0 438

1 1 0 38.8 2 2 1 48.8

1 1 1 438 2 >2 Any 0

1 2 0 31.2 3 0 3 86.2

1 2 1 36.2 3 1 2 73.8

1 >2 Any 0 3 2 1 61.2

2 0 2 68.8 3 >2 Any 0

2 1 1 56.2

Delayed response

m |n some trials, Y, may require a long time to be

ascertained

m Consequence: some Y, are unavailable at the
interim time, making adaptive decisions difficult

m Approach

e Use multiple imputation to impute unobserved Y
e Leverage the measure of biological activity (e.g.,

immune response) to impute Yg

9/24/20
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BOIN12 design

Another model-assisted phase |-l design

_—_—
BOIN12 design

Compared to U-BOIN

s BOIN12 is a single-stage design targeting the OBD from
the beginning of the trial

s BOIN12 generally requires a small sample size, thus is
particularly suitable when the number of dose is larger
(e.g., >3)

= U-BOIN, however, is a good choice when
e The MTD is of substantial interest
e The number of doses is small (< 3)

e Interested in collecting some data (e.g., PK/PD) over multiple
doses

Lin R, Zhou Y, Yan F, Li D and Yuan Y (2020) BOIN12: Bayesian Optimal Interval Phase I/Il Trial Design for Utility-Based Dose
Finding in Immunotherapy and Targeted Therapies, JCO precision oncology, minor revision invited

9/24/20
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Toxicity and efficacy outcomes

m LetY; =0,--,Q0 — 1 denote a O-level toxicity
endpoint, where a higher level represents a
more severe toxicity

m LetY; =0,:--,R — 1 denote the R-level efficacy
endpoint, where a higher level represents a
more desirable response

m (Y, Yy) can be equivalently represented by a

multinomial variable Y with K = RxQ levels
Y = k|d ~ Multinomial(ry(d), -, ng(d)), k=1,..,K

Lin R, Zhou Y, Yan F, Li D and Yuan Y (2020) BOIN12: Bayesian Optimal Interval Phase I/l Trial Design for Utility-Based Dose
Finding in Immunotherapy and Targeted Therapies, JCO precision oncology, minor revision invited

e ———————
Risk-benefit tradeoff

m Use utility to measure the desirability of the

doses
No Yes
(Ye=0) (Ye=1)
No (Yr=0) uy = 30 u;= 100
Yes (Yr=1) Uy =0 uz =50

9/24/20
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Quasi-binomial model for utility

m Letuy,...,uy denote the utility ascribed to the four
possible outcomes

m  The mean utility for dose d is given by
u(d) = uymy(d) + uamy(d) + uzms(d) + ugmy(d)

m Define standardized utility u*(d) = u(d)/100, such that
u*(d) € [0,1] and is a weighted average of (r,(d),
T[Z(d)’ 77:3(d)1 7T4(d))

= u*(d) thus can be viewed as a probability and modelled
using the binomial distribution with “quasi-binomial”
data (x(d), n(d)), where

~ wy1(d) + upy,(d) + uzyz(d) + uyy,(d)
x(d) =
100
and n(d) is the number of patients treated at d.

_— , =
Quasi-binomial model for utility

m Thus, the quasi-binomial likelihood of the
observe data D(d) is

L(D(d) | w*(d)) o (u*(d))" P (1 = u ()" P

m Under the Bayesian framework, assign u*(d) a
Beta prior, i.e., u*(d) ~ Beta(a, 3), the posterior
distribution of u*(d) arises as,

u*(d) | D(d) ~ Beta(a + x(d), B +n(d) — x(d))

9/24/20
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Adaptive decision rule

Compute the DLT rate
at current dose j

Within| (A, A¢)

Count the number of
patients at dose j

Choosea dose from
Ch dose from
De-escalate to U o_oieg u‘;is: L:c {j —1,j,j + 1} using the
dosej—1 2l s desirability score table

desirability score table

Target toxicity rate for the MTD
Boundary 0.1 0.15 0.2 0.25 0.3 0.35 0.4
Je (escalation) 0.078 0.118 0.157 0.197 0.236 0.276 0.316

Ad (de-escalation)  0.119 0.179 0.238 0.298 0.358 0.419 0.479
N———/

_—
Adaptive decision rule

Table S2. Decision table for the BOIN12 design with the target toxicity rate ¢, = 0.35, the target efficacy rate
¢ = 0.25, and the utility specification u; = 100, u, = 30, u3 = 50, and u, = 0, up to six patients.
&

No. No. | No. No. Desirability No. No. | No. No. Desirability
Patients | DLT | Eff | (No DLT, Eff) Score Patients | DLT | Eff | (No DLT, Eff) Score
0 0 0 0 59 6 2 1 1 31
3 0 0 0 30 6 2 2 0 39
3 0 1 1 53 6 2 2 1 45
3 0 2 2 71 6 2 2 2 49
3 0 3 3 79 6 2 3 1 56
3 1 0 0 20 6 2 3 2 60
3 1 1 0 36 6 2 3 3 65
3 1 1 1 43 6 2 4 2 69
3 1 2 1 58 6 2 4 3 72
3 1 2 2 63 6 2 4 4 77
3 1 3 2 74 6 2 5 3 2
3 2 0 0 11 6 2 5 4 6
3 2 1 0 25 6 2 6 4 8

9/24/20
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Simulation

m Compare BOIN12, EffTox, and 3+3+CE
designs

m 3+3+CE design: dose escalation using the 3+3
design, followed by a cohort expansion at the
identified MTD using Simon’s two-stage design

m Five dose levels
m Patients are treated in
cohorts of 3 with N=36

u; = 100 U; = 40

U3=60 U4=0

Scenarios

SSSSSSSS - Scenario 2 - Scer
g £ e g £ e
/\\ . f g
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& W &
o
' 2 B . s
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SSSSSSSS Scenario § Scer
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g Alez i
55 ° s s
. g ° . -
- -
o |- - Lo
1 2 3 . s
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llllll Scenario 8 Scer
~— |, £ s £
i £
- olozf s
) 3 x H
E 3 re g g4 o re g8
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Correct selection

percentage

BN 3:3:CE = EffTox EE  BOIN12
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&
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25
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Scenario
Number of patients at OBD
BN 3:34CE O EffTox EE  BOINi2
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&
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@ 0
o
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Number of patients overdosed

| 3+3+CE = EffTox | BOIN12

12

10

Number of patients at overdoses

4 5 6

Scenario

www.trialdesign.org

INTEGRATED PLATFORM
FOR DESIGNING

CLINICAL TRIALS
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Using multiple endpoints to improve the
efficiency of phase I-ll design for
immunotherapy

Liu, S., Guo, B. and Yuan, Y. (2018) A Bayesian Phase I/l Trial Design for Immunotherapy.
Journal of the American Statistical Association, 113, 1016-1027.

s
Notation

m  Consider a phase I-ll trial with J prespecified doses,
d, < - <d;, under investigation.

m Let Y} denote the binary toxicity outcome, with Y, = 1
indicating toxicity, and = 0 otherwise.

m Let Yy denote the tumor response, with Yz = 0,1, and 2
indicating PD, SD and PR/CR, respectively.

s Let Y; denote a measure of the immune response (e.g.,
the count of CD8+ T-cells or the concentration of
cytokine), which takes a real value after appropriate
transformation.

» Adaptive decisions in the trial (e.g., dose assignment
and selection) are based on the behavior of the trinary
vector (Y, Y, Yg) as a function of dose d.
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Factorization

To reflect the fact that in immunotherapy,
clinical responses rely on the activation of the

immune system, the joint distribution
[V}, Yr, Yz |d] is factorized as

[YIIYT' Ye |d; 9] = [Y1|d: 01][YT1 YE|d;Y1:92]

where @ is the vector of the parameters, and 6,
and @, are subvectors of 6.

s
Model for immune response Y,

Model immune response [Y;|d, 8] using an Emax model,
alda3

Yi|d,0; = ay + a;z3 T
where « is the baseline immune activity in the absence
of the IT; a; is the maximum immune activity that is
possibly achieved by the IT above the baseline activity
(i.e., Emax); @5 is the dose that produces half of the
maximum immune activity (i.e., EDsq); a3 is the Hill factor
that controls the steepness of the dose-response curve;
and ¢ is the random error, which is normally distributed
with a mean of 0 and variance o2, i.e., ¢ ~ N(0,0?).

9/24/20
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Latent variable model for Yrand Yge

m Let Z; and Zy denote two continuous latent variables
that are related to Y; and Yz, respectively, as follows,

. 0 if Zp <&
YT:{O UIT<8 and ve=1 1 if&<Zs <&
1ifZr =4 2 if Zg =2 &,

where {;, & and &, are unknown cut points.

m Zr and Zg can be interpreted as the patient's latent
traits, and Yr and Yg are the clinical manifestations of
unobserved Z; and Zj.

s When Z; and Zj pass certain thresholds, certain clinical
outcomes (e. g., toxicity, CR/PR) are observed.

Toxicity model

m [Z,Zg|d, Y] follows a bivariate normal distribution
(ZT) Y,d ~ N, (HT(YI» d)>’ (011 012)

Zg ug(Yy, d)/ " \012 022
where uy (Y;,d) = E(Zy|Y;,d), k = E or T, is the
conditional mean of Z,.

n up(Y;, d) follows a threshold model,
pr (Y, d) = Bo + prd + 1(Y; > B3)B2Y;

Where [y, B1, 2, Bz are unknown parameters, and the
indicator I(Y; > B5) = 1 when Y; > 5, and 0 otherwise.

= Immune response Y; induces toxicity only when it
passes threshold f;.
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Efficacy model

Model the mean structure ug(Y;, d) for efficacy as

up (Y, d) = yo + v1Yy + v2¥7
Although the quadratic model cannot directly take an
increase-then-plateau shape, it works reasonably well
in that case.
In addition, as the Emax model allows Y; to plateau with

the dose d, the above model indeed accommodates the
case that efficacy Y plateaus with d.

_—
Dose admissibility criteria

To safeguard patients from overly toxic or
ineffective doses.

Let m = Pr(Y; = 1|d) denote the toxicity rate
and y; = Pr(Ygz > 0|d) denote the response
rate of SD/PR/CR.

Let ¢ denote the upper limit of the toxicity rate,
and ¢y denote the lower limit of the response
rate, specified by physicians.

9/24/20
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Dose admissibility criteria

m A dose d is defined as admissible if it satisfies both the
safety requirement
Pr(my > ¢7[Dy) < Cr
and the efficacy requirement
Pr(mg < ¢g|Dn) < Cg
where Cr and Cg are prespecified cutoffs, and D,, is the
observed data from n treated patients.
m We can also add immune response to define admissible
Pr(m; > ¢;IDyn) < (;
m Let A denote all admissible doses
m  Dose assignment and selection are restricted to A

s
Desirability and optimal biological dose

m  Use a utility U(Y}, Yz, Yg) to map multi-dimensional
outcomes into a single index to measure the desirability
of a dose in terms of the risk-benefit tradeoff.

Efficacy
Immune PD SD CR/PR
Toxicity response (YE=0) (Ye=1) (Ye=2)
No (Yr = 0) Desirable (Y = 1) 5 70 100
Undesirable (¥; = 0) 0 50 80
Yes (Yr =1)  Desirable (¥; = 1) 0 20 45
Undesirable (¥, = 0) 0 10 35
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Calculation of utility

m For a given dose d, its true utility is given by

E(U(d)|0) = f U(Y, Yr, Ye)f (Y, Yr, Ye|d, 0) dVidYrdYg

m  Since 0 is not known, the utility of dose d must be
estimated.

m  Given interim data D, collected from the first n patients

at a decision-making point in the trial, the utility of dose
d is estimated by its posterior mean

E(U(d)|Dy) = f E(U(d)|6)p(8]Dy) d6

_—_—
Dose-finding algorithm

m The first cohort of patients is treated at the lowest dose
dy.

= Assume that r cohort(s) of patients have been enrolled
in the trial, where r = 1,---,R — 1, and let d;, denote the
current highest tried dose. To assign a dose to the ( +
1)th cohort of patients:

e |If the posterior probability of toxicity at d;, satisfies
Pr(mr(dp) < ¢r|Dy) > Cos and dy, # d;, then we treat
the (r + 1)th cohort of patients at d;,,; where C,
denote the probability for escalation based on
toxicity, and n = mxr.
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Dose-finding algorithm (cont.)

m Otherwise, we identify the admissible set A and
adaptively randomize the (r + 1)th patient or
cohort of patients to dose d; € A with
probability

Yjn = Pr[U(dj) = max({ U(djf), j'€ A} |D,]
If Ais empty, the trial is terminated.

m  Once the maximum sample size of N is
exhausted, the dose in A with the largest
posterior mean utility E(U(d)|D,,) is
recommended.

Shotgun: A Tissue-Agnostic Phase I-ll Design
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Tissue-agnostic trials

m Tissue-agnostic clinical trials have become
increasingly important in the development of
targeted therapy and immunotherapy for cancer

m Tissue-agnostic drugs approved by FDA
e Entrectinib for treating NTRK gene fusion cancer
patients, regardless of cancer types

e Pembrolizumab for tumors with microsatellite
instability-high (MSI-H) or mismatch repair decifient
(dMMR) tumors

e Larotrectinib for NTRK gene fusion tumors

_—
Conventional design

m One indication at a time, grossly inefficient !
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Shotgun design

Shotgun design

Multiple Cohort Expansions
Phase

..................................

N
1L

Indication j-1

All-comers . h
P /e Adaptively borrow information
Phase I Dose finding ... ___________________________ based on CBHM
(BOIN) H {

Indication j

l Interim 1 l l Interim 2 l l Final analysis l
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Stage I: dose escalation using BOIN

Start at the
pre-specified
starting dose

A4

Compute the empirical DLT
rate (#; r) at the current dose j

<2 b 1y s =g
All Comers v within (4., 24) & -
Stage | Escalate the Stay at the De-escalate the
dosetoj+1 current dose j dosetoj—1
Target DLT rate (¢r)
Boundaries 0.15 0.20 0.25 0.30 0.35 0.40
A, (escalation) 0.118 0.157 0.197 0.236 0.276 0.316
A4 (de-escalation) 0.179 0.238 0.298 0.358 0.419 0.480
\ any dose reach s, ? /
Yes

v

_—
Stage II: multiple cohort expansion

m After the RP2D is determined, indication-
specific cohort expansions are initiated to
assess the efficacy of the drug in each of the G
indications.

m The toxicity and efficacy data from the patients
who were treated at the RP2D in stage | will be
included in stage |l to improve the efficiency of
the design.

m Borrowing information, e.g., using the Bayesian
hierarchical model (BHM, Thall, et al., 2003),
across cohorts is attractive
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Bayesian hierarchical model

m Let g, denote the response rate in indication g,
do,q denote null response rate that is deemed
futile, and q, 4, denote the target response rate
that is deemed promising.

= BHM
Xglqg ~ Binomial(qg)

0, =1 —1
9= 08 <1 - qg) o8 <1 - CIo,g)

6,16,0% ~ N(6,0%)
where x4 is the number of responses in indication g, g =
1,-,G

_—
Clustered BHM (CBHM)

m The exchangeable assumption underlying the
BHM, however, is not always appropriate,
resulting in inflated type | error or low power
e [tis not uncommon that that some tumors are

responsive to the treatment, while others are not

m CBHM is to address this issue: based on the
interim data, cluster the cohorts into responsive
and non-responsive subgroups; and then use
the BHM to borrow information within each
subgroup.
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Clustered BHM (CBHM)

m Clustering Step

e Bayesian clustering rule: an indication is allocated to
the responsive cluster R if it satisfies

Pr (qg > w |data) > 0.5 <ﬁ>w;

g2
otherwise allocated to the non-responsive cluster R,
where ng is the interim sample size, Ny, is the

prespecified maximum sample size of indication g
for phase I, and w is a tuning parameter
(recommended w = 2 or 3)

e The interim-sample-size-dependent adaptive cutoff
improves the performance, borrowing the idea from
the BOP2 design

_—
Clustered BHM (CBHM)

m Borrowing Step

e Apply the BHM to responsive cluster R and non-
responsive cluster R independently

x41q4 ~ Binomial(q,), g ERorR

=1 —1 _—
% = log <1 - qy) o8 <1 - CIO,g)

6,4160,0° ~ N(8,0%)
6 ~ N(0,105),62 ~ N(1076,106)

e When the number of indication in a cluster is 1, use
beta-binomial model.
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All-comers
Phase I Dose finding
(BOIN)

le Cohort Exp
Phase

P

Indication 1 |

i
i

i
i

Interim go/no-go rule:

| Stop the accrual to indication g if
i+ Pr(qq < qogldata) < C(ny)

(futility)

L. Pr(pg < ¢T|data) >Cr

(toxicity)

i where pg is the toxicity rate, ¢ is

| the toxicity upper limit, Cris a

| probability cutoff, and C(ny) is the

i optimal probability cutoff taken from
i BOP2 design (www.trialdesign.org)

‘ Interim 1 H Interim 2 ‘ ‘ Final analysis ‘

e ———————
Simulation

m 4 doses, and 5 indications with accrual rate of
3,2.5,2,1.5 and 2 per month

m n=24 for stage |, and maximum n=21 per

indication

m Null response rate g, = - = qo5 = 0.05, and
alternative response rate q; ; = - = q;5 = 0.3

m Compare shotgun with the convention design
(3+3 design followed by Simon’s two-stage

design)
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Performance metrics

m Correct discovery rate (CDR)

Number of correct discoveries

CDR =
Number of promising indications

m False discovery rate (FDR)

Number of false discoveries
FDR =

Number of indications claimined as promising

m Adjusted discovery rate (ADR)

ADR = Number of correct discoveries — Number of false discoveries

Number of promising indications

Correct discovery rate (CDR)

—— Conventional
& —— Shotgun
2o
\o/o o o\o/o\o/o
o
a
O 2 -

j
=
\

Scenarios
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False discovery rate (FDR)
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Conclusion

m  Shotgun design provides a highly efficient and
flexible Bayesian phase |-l method to develop
tumor-agnostic drugs

e Eliminates the white space between phase | and
phase Il

e Allows the total number of interim analyses and
interim times to vary from one indication to another

e Borrows information efficiently and accurately across
indications using the novel CBHM

Handle Delayed Toxicity and Efficacy
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Late-onset efficacy and toxicity

m A major impediment to implement adaptive
designs in practice is that outcomes must be
observed soon enough to apply the adaptive
decision rules to choose treatments or doses
for newly accrued patients.

m This is true for all outcome-dependent adaptive
trial designs, regardless of the phase and type.

m In phase I-ll trials, this problem arises if either
toxicity or efficacy is not scored quickly, relative
to the trial’'s accrual rate.

Patient 4 (Y,=0)

Patient 3i (Y;=1)
9

Patient 2! (Y,=0)

Patient 1 (Y,=1)

Py

3
TIME

Challenge: how to treat the new patients while waiting to
evaluate the outcomes of the previous patients?
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Trial example

A phase |-l dose-finding to determine the optimal dose of
three fractionated stereotactic radiation therapy (SBRT)
doses, given either with or without a novel
radiomodulating agent.

Toxicity is defined as a grade 3 or 4 gastro-intestinal (Gl)
toxicity, occurring within 90 days from the start of therapy.
Efficacy is defined as stable disease (SD) or better,
compared to baseline, as evaluated at day 90 from the
start of therapy.

Expected accrual rate: 2 patients/month in each arm
LO-EffTox design was used, and the accrual has been
completed!

Jin, I.H., Liu, S., Thall, P. and Yuan, Y. (2014) Using Data Augmentation to Facilitate Conduct of Phase /Il
Clinical Trials with Delayed Outcomes. Journal of American Statistical Association, 109, 525-536.

_—
Three general approaches

m Weight the observation with incompleted follow-

up with a “partial credit” (Cheung and Chappell,
2000)

e Weight the observation with its follow-up time
Model the toxicity and efficacy outcomes as
time-to-event endpoints (Yuan and Yin, 2009)

Regard unobserved toxicity and efficacy
outcomes as missing data and handle them
using missing data methodology
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Three general approaches

m  Weight the observation with incompleted follow-
up with a “partial credit” (Cheung and Chappell,
2000)

e Weight non-DLT with its follow-up time

m  Model the toxicity and efficacy outcomes as
time-to-event endpoints (Yuan and Yin, 2009)

m Regard unobserved toxicity and efficacy
outcomes as missing data and handle them
using missing data methodology

Jin, LH., Liu, S., Thall, P. and Yuan, Y. (2014) Using Data Augmentation to Facilitate Conduct of Phase I/1I
Clinical Trials with Delayed Outcomes. Journal of American Statistical Association, 109, 525-536.

_—_—
Delayed outcomes as missing data

Patient 4 (Y,=0)

Patient 3 (Y;=1)
£5

Patient 2 (Y,=0)

Patient 1 (Y,=1)

b4

TIME
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Delayed outcomes as missing data

Patient 4 (Y,=0)

Patient 3} (Y;=1) !
£

Patient 2i (Y,=0)

Patient :I;‘(Y1=1)

3
TIME

_—_—
Delayed outcomes as missing data

Patient 4 (Y,=0)

Patient 3i (Y3=1)
¢

Patient 2 (Y,=0)

Patient 1 (Y;=1)
2D b, 1

3
TIME
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Delayed outcomes as missing data

Patient 4 (Y,=0)

Patient 3\ (Y1) |
%

Patient 2 (Y=0) |
atien ?(2) 4

Patient 1} (Y=1) |
atien _‘(1) 4

_—
Advantages of missing-data approach

m Intuitive and natural
m Likelihood based, thus efficient and rigorous

m Very general, can be used with almost any
adaptive designs to handle delayed outcomes
e phase | (Liu, Yin and Yuan, 2013), phase Il (Cai, Liu
and Yuan, 2014), phase I-ll (Jin et al., 2014), ...
m Include the original design without delayed
outcomes as a special case
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General approach

" Impute"

Formulate late-onset missing Apply the existing
outcomes as — | values and | — trial design
missing data complete the to the completed data

dataset

e — |
Notations

m Y, and Y; denote binary toxicity and efficacy
outcomes

m U; and Ug denote fixed follow-up times for
assessing toxicity and efficacy

m X, and X; denote times to toxicity and efficacy

m I/ denote the patient's follow up time, by design
V<UuU

m X2 =VAXrand XJ =V AXg
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Notations

m Missing data

L time to toxicity Xy |
N il
%
follow-up time V
T A A A
0 ' Time 2 3
Mssessment period UT%

e — |
Notations

m No missing data

time to toxici%y Xt

—k

follow-up time V

T A A A
0 ' Time 2 N
k——Assessment period Ur——)
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Missingness of outcomes

m For k = EorT,

missing if X, >VandV < Uy (i.e.,XP =V),
1 if X SV < U (ie, X2 = Xp),
0 if X >V=U (i.e., X7 = Uy).

Yi

L time to toxicity Xy
r i
)
T

follow-up time V

f A A A
0 ' Time 2 3

k——Assessment period Ur——

_—_—
Missing data mechanism

n  Let My = I(Y}, = missing) denote the missingness
indicator for k = E, T

m  Three types of missing data mechanism (Little and Rubin,
2002)
e Missing completely at random (MCAR)} if
f (M|, 0) = f(M|6)

e Missing at random (MAR)} if

f (MY, 8) = f(My|Yic s, 6)
e Nonignorable or not missing at random (NMAR)} if

f (MY, 0) = f(My|Yiemis, 6)
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Nonignorable missing data

m The missing data induced by delayed outcomes are
non-ignorable (Yuan and Yin, 2010).

m  Formally, Pr(M;, = 1|Y;, = 0) > Pr(M;, = 1|Y;, = 1).
= By Bayes’ rule,
Pr(Y, = 1|My =0) Pr(Y, = 1|M; = 1)
Pr(Y, = 0|My = 0) ~ Pr(Y, = 0|M, = 1)
That is, the odds of event k decrease if Y, is missing, so

the missing indicator M;, contains information about the
future value of Y;,.

m |tis necessary to model the missing data mechanism.

_—_—
Missing data mechanism

m Missing data induced by delayed outcomes are a
special type of nonignorable missing data with a known
missing data mechanism as follows

missing if X > VandV < Uy (i.e., X2 =V),
Y = 1 if X <V<Ug(ie, X2 =Xp),
0 ifX>V=U (i.e., XP = Up).

That is,
M, = {1 if X >Vand V < Uy (i.e., X2 = V),
0 otherwise
= As a result, we need to model X, the time to toxicity
and efficacy.
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Model for times to toxicity and efficacy

m  Model marginal survival functions S (xz|Yz = 1)
and S;(x;|Y;y = 1) using piecewise exponential
distributions
e Partition the follow-up period [0, U] into L;, intervals.

e Fordose d, assume hazard A ; on the [-th
subinterval, where all A;; > 0.

e The marginal survival function for X, is give by

L
Se(x1d,Y; = 1, A, i) = exp {_zwk,l(x)/lk,l}'x >0

=1
Where the WelghtS Wk‘l(x) = h’k,l - hk,l—l |fx > hk,l; Wk,l(x) ==
X — hk.l—l |f X € [hk,l—l' hk,l); and otherW|S€ Wk,l(x) =0.

_—_—
Bayesian data augmentation

m |Imputation step, in which the missing values of
Y, and Y, are sampled from their full conditional
distributions,

m Posterior step, in which a posterior sample of
unknown parameters is simulated based on the
completed data including the imputed Y, and
Yg.

e |n what follows, we illustrate the Bayesian data
augmentation approach using the EffTox design.

e The method can be applied to any phase I/l design
(e.g., utility-based designs).
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Quick review of EffTox design

m Logistic models for marginal distributions of Y and Yy
logit(mg) = pg + dfy g + d*Bo
logit(mrr) = pr + dByr + d*Bor
where y = Pr(Yy = 1|d), mr = Pr(Y; = 1|d) and d is
dosage.
»  Gumbel model for the joint distribution of Y; and Yy
Tap = Pr(Yg = a,Yr = b) = (mp)*(1 — )~ (wr)? (1 -
)P + (=) (1 — mp)mr (1 — 7p) (:i;i),

where Y parameterized association between Y;: and Y.

Toxicity-efficacy tradeoff

m 7; = (0.15,0); 7; = (1.0,0.55); w3 = (0.3,0.3)

Prob(TOXICITY)

L(q)
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Dose assignment rule

m When a new patient arrives, based on
outcomes from patients who have been treated
in the trial, update 7, , and assign that patient
to the most desirable dose (according to the
tradeoff).

_—
Imputation step

Three possible missing data patterns

m Both Y; and Y; are missing,
T1,1511
1 21 S 4
a=02b=0Ta,b ab
T1,05910
2c11=0 lea=0 TabSab ,
T,1501
1 1 ’
a=0 2b=0Ta,bSab
10,0500
221:0 Z}%:o 7Ta,bSab ,
where S,, = Pr(Xg >V, Xr > V|Yg = a,Yr = b) and
a,b = {0,1}.

PF(YE =1Yr = 1|Dobs) =

PF(YE =1Yr = OlDobs) =

PI‘(YE = O, YT = 1|Dobs) =

PF(YE =0,Yr = OlDobs) =
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Imputation step

m Yy is missing but Y; is observed, we draw the
missing value of Yz

T1,1510 .
— ifY; =1
p _ _ ) m1,1510 T 7o r
r(Yg = 1|Dyps) =
10510 ifY; =0
=

71,0510 + Mo

where S, = Pr(Xg; >V, X > V|Yg =a,Yr =b)and a,b = {0,1}.

m Y, is missing but Y; is observed, we draw the
missing value of Y;

11501
11501 + 71,0
To,1501

ifYp=1
Pr(Yr = 1|Dyps) =

_To1d0r ey —
To,1501 + o0

_—
Posterior step

m  Given the imputed data, sequentially sample
the unknown model parameters from their full
conditional distribution as follows:

e Sample 6 sequentially from its posterior distribution
f(01D(Y)) where 6 is the parameters for the
bivariate toxicity-efficacy model.

e Sample A, and ¢, k =1,---,K; and j = {E, T}
sequentially from its posterior £ (4, ¢|D(Y)).
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Simulation

m Five dose levels with raw doses
d=(25,5.0,7.5,10.0,12.5)

m Assume Uy = U; = 6 weeks with accrual rate
a = 1.5/week.
m N, =3%X16 =48 and K = 6.

m The trade-off contour, C ,was determined by
fitting a quadratic curve to the trade-off target
pairs (g, mr) = (0.15,0), (0.45,0.20), (1, 0.60).

Efficacy—toxicity Trade—off Contours

1.0

0.8

Pr(toxicity)
0.4 0.6

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0
Pr(efficacy)
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Simulation

m A dose d is considered acceptable if
Pr{nz(d, ) > ng|D(Y)} > pg and
Pr{r;(d,0) < @r|D(Y)} > pr

m  We considered 4 different true dose-toxicity and
-efficacy scenarios.

True toxicity-efficacy scenarios

Scenario 1 Scenario 2
g 1 0.52 0.53 0.58 0.61 0.67 g 1 043 0.43 0.59 0.52 0.32
.8 =5 A
= H
= 8]
S <
Q o
o |
3 8
=] Q|
2 5
doses
Scenario 3 Scenario 4
24 063 0.55 0.43 0.32 0.31 24 043 0.34 0.42 0.31 0.27
‘,A
© © |
> ~.S
= i
83 g
i e
Q o
g e 34
.
2 2
S} . 4 T
1 2 4 5 1 2 4 5
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Methods for comparison

m  “One Level Down” rule: If some of the patients treated at the
current dose d,- have not yet been evaluated fully, i.e. Y; g 4 =
missing or Y; 4 = missing, then any new patient is treated
atd,_q.

m  “Look Ahead’ rule: if all possible values of Y5 or Y that
currently are missing will not change the dose assignment
decision, then treat any new patient based on that dose
assignment decision. Otherwise, we make new patients wait
to be treated or turn them away and treat them off protocol.

m  “Complete Case” rule: Use all complete cases, where both Y
and Y; are observed, so compute d°Pt and treat the next
patient immediately.

_—
Two performance metrics

m Desirability-weighted selected percentage:
5o y>_,6true p(select d,)I(d, € ATVe)
B 5_, 8iUe [(d, € AtTue)
where §L™¢denotes the true desirability of dose d, and At"%¢
denotes the true set of acceptable doses. This criterion

quantifies dose selection reliability and thus potential benefit fo
future patients.

m Theratio N;/Nr where N; and Ny denote the number of
patients who experienced efficacy and toxicity, respectively.
This criterion quantifies benefit to the patients in the trial, hencs
may be considered an index of ethical desirability.
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Results

35
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e — |
Trial duration

Trial Time Comparisons
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Conclusion

m Delayed outcomes are the major practical impediment
of any outcome-adaptive clinical design.

= A general methodology to address this problem is to
treat unobserved outcomes as nonignorable missing
data.

m Bayesian data augmentation can be conveniently used
to handle the resulting missing data.

m  Simulation studies show that the methodology
outperforms the existing approaches.
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