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The Conventional  Phase I → Phase II Paradigm

Phase I

Goal: Determine a “safe” dose (or MTD = maximum tolerated 
dose) of an experimental agent, which may or may not have 
anti-disease efficacy, for use in later phase II or phase III trials

▪ Do this based on DLT = Dose Limiting Toxicity, usually a 
binary indicator of one or more specific adverse events 
within a given follow up period

▪ Choose doses for successive cohorts of 1, 2, or 3 patients. 

▪ Usually done using a “3+3” algorithm  → Escalate until “Too 
much Toxicity” then de-escalate, and never re-escalate

▪ Sometimes done using a variant of the Continual 
Reassessment Method (CRM)

▪ Ignore Efficacy in the dose-finding algorithm 

▪ Often, treat a  large “expansion cohort” at the selected MTD



The Conventional  Phase I → Phase II Paradigm

Phase II

Goal :   Determine whether the new agent, administered at the 
MTD chosen in phase I, is sufficiently “promising” to 
motivate a large randomized phase III trial

▪ Do this based on the probability of “Response”, usually a 
binary indicator of an Efficacy event, compared to some 
fixed “standard” or  “null” response probability p0 , often 
using one of the Simon (1989) 2-stage designs.

▪ Ignore Toxicity in the design.

▪ Have a Data Monitoring Committee to review the data and 
keep an eye on adverse events (AEs), but do not specify 
any formal, objective safety rules for stopping the trial 
early if the observed AE rate is to high. 



Common Protocol Description of “the” 3+3 Algorithm

[Number of patients with DLT]  /
[Number of patients evaluated] 

at a given dose level
Action

0 / 3 Treat 3 pats at the next higher 
dose level (Escalate)

1 / 3 Treat at least 3 more pats at the 
current dose level: 

• If 0/3 DLTs → Escalate
• If > 1/3 DLTs → De-escalate

> 2/3 Stop escalation.  If only 3 pats 
were treated at the next lower 
dose, treat 3 more at that dose.

MTD: The highest dose at which < 1/6 pats had DLTs.  6 pats 
must be treated at a dose before it is declared the MTD



1. If a MTD does not exist, the algorithm does not say what to 
do.  E.g. if 2/3 DLTs are seen at the lowest dose, or 0/6 DLTs 
are seen at the  highest dose.

2. The “>2” in the left column is ambiguous: 2/3, 2/6, and 2/9  
have very different meanings. 

3. Absence of a stopping rule creates ambiguity: 

• If you observe 0/3 DLTs at d=1,  0/3 at d=2, then 1/3 + 1/3 = 
2/6 at d=3, so de-escalate to d=2, and then observe 0/3 for a 
total of 0/6 at d=2, should you 

→ treat 3 more patients at d=2,  or

→ stop and declare d=2 the MTD? 

• If you treat 3 more patients at d=2, you may end up 
observing 0, 1, 2, or 3 DLTs in 9 patients. The algorithm 
does not say what to do, or what to conclude, in these 
cases.

Logical Problems with this 3+3 Algorithm





Typical Data from a Phase I Trial after 3+3

Usual claim:       “The MTD is  200 mg/m2 ”

Reality: These trial results all are very unreliable

• A 95% CI for Pr(Tox | d=MTD) runs from .01 to .52 
• Toxicity severity level is ignored.

• Efficacy is ignored.  What if  

Pr(response | d=200) = .25 and Pr(response | d=300) = .50 ?

Dose mg/m2 # Toxicities / # Patients Posterior 95% Credible 

Interval

100 0 / 3 .00  — .43

200 1 / 6 .01  — .52

300 2 / 6 .06  — .69

400 — —



For each of the four datasets below, posterior 

95% Credible Intervals (CIs)  for Pr(Toxicity | MTD) 

all include the interval  [ .07 - .41]

Observed data

T
o

x
ic

it
y
 p

ro
b
a

b
ili

ty

1/6 2/9 2/12 3/15

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7 1                 2                3                 4



Actual Properties of 3+3 Algorithms

▪ Produce very small samples → Very unreliable

▪ Very short memory → They waste data

▪ Many different versions. 

▪ Many decisions are left unspecified.

▪ No explicit target Pr(DLT)

▪ No explicit upper limit on Pr(DLT) → Likely to 
choose an unsafe MTD

▪ Ignore Efficacy → Likely to choose an ineffective 
MTD

▪ Do not allow re-escalation after de-escalation from 
a “toxic” dose, based on a tiny amount of data →

→ A dose above the MTD that may actually be safe 
and have higher Efficacy is likely to be missed.



Continual Reassessment Method (CRM, 1990)
1. Define a binary DLT that is scored quickly
2. Set N= maximum sample size, c=cohort size = 1, 2, or 3
3. Assume a simple model for Pr(DLT | d=dose)
4. Choose a fixed target p* = Pr(DLT)
5. For each cohort, use all (d, DLT) data to choose a dose 

dnew with E{ Pr(DLT | dnew) | data}  closest to p* 
6. When N is reached, the last choice is the “MTD”

Implicit Assumption Underlying All “Phase I Toxicity Only”  
Dose-Finding Designs (3+3 or CRM):
There is an Efficacy outcome for which Pr(Efficacy | d) 
increases with dose. If not, then why not treat all patients 
at d = 0, (do not treat) to ensure Pr(DLT) = 0 ?   

Typical assumption:  Pr(PFS > t | d )     in d for all t.



Computer Simulations: 3+3 A, 3+3 B, and CRM with p* = .25 

were simulated under each assumed dose-toxicity curve. 

1000 trials simulated for each (curve, method) pair.



Selection Percentages Under C1



Selection Percentages Under C2
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Selection Percentages Under C3
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The CRM with target pT* = .25  considers a dose d1 with 
pT(d1) = .30 superior to a dose d2 with pT(d2) = .05, 
because 

|.30 - .25| = .05  <  .20 = |.05 - .25 |  → Using the CRM 
with target pT* = .25 implies that you believe it is 
better to have a dose with 30% toxicity than a dose 
with 5% toxicity.

An Example of the Inherent Nuttiness of the CRM



‘The Tragedy of Agent X ’ :  A True Story

• At a large, well known cancer center, a phase I trial 
was conducted to optimize dose of Agent X, a 
histone deacetylase inhibitor that enhances 
cytotoxicity when combined with nucleoside 
analogs:  added to Fludarabine + Clofarabine + 
Busulfan as a preparative regimen in allogeneic 
stem cell transplantation for acute leukemia.

• 6 doses of X were studied using the TiTE-CRM. 

• Toxicity was defined, over 30 days of follow up, as 
time to any of the very severe, very unlikely events
▪ Graft Failure

▪ Grade 4 or 5 (fatal) non-hematologic, non-infectious 
toxicity, Mucositis, or Diarrhea   

Grade 3 was not counted as a “DLT”



• Very  few of the very unlikely DLTs were seen, so the TITE-
CRM quickly escalated to d=6, producing final sample sizes 
(3, 3, 3, 4, 4, 51) at doses (1, 2, 3, 4, 5, 6).

• To do survival analyses,  doses {1,2,3,4,5} were combined 
as a “Low” dose group (n=17), with dose 6 “High” (n=51). 

• Painful Surprise: The 51 patients who got the “optimal” 
dose 6 had worse survival than the 17 patients who got 
doses 1 – 5. 

Survival 

with the 

“optimal” 

dose X(6) 



But what about covariate effects?  Fitted piecewise 
exponential Bayesian survival regression model

Posterior Estimates

Hazard 

Ratio

95% Credible 

Interval

Probability of 

a Harmful Effect

High  vs Low Dose 2.74 0.82 - 7.66 0.92
Age 1.03 0.98 - 1.09 0.89

MRD 3.63 1.17 - 11.63 0.98

Not in CR1 0.77 0.21 - 3.46 0.36

High Risk 1.40 0.39 - 5.52 074

AML 0.88 0.23 - 2.99 0.42

Comorbidity Score 1.05 0.78 - 1.40 0.67

Maintenance 

Therapy

0.16 0.03 - 0.85 0.02

MUD 2.12 0.62 - 7.21 0.92

Graft Source = 

Bone Marrow

0.38 0.06 - 1.77 0.14



Now What?

Based on the survival time data, it would be unethical to run a 

phase II or phase III trial with Agent X at dose 6.

There is far too little information to determine which of doses 

1 – 5 might be “optimal” in some sense.

Running another dose-finding trial in this setting is far from 

feasible, given the cost and time to run a second trial, and 

numerous competing agents. 

Unanswerable Question: 

Was dose 6 of Agent X too much of a good thing?



1. >50% shrinkage of a solid tumor within 4-8 
weeks

2. Complete remission of leukemia within 42 days

3. Dissolve the blood clot that caused a stroke 
within 24 hours

4. Engraftment of a stem cell transplant within 4 
weeks

Some Examples of 
Early Treatment Efficacy Events



Three Examples of Nutty Flaws with the Phase I 

(Toxicity Only) → Phase II (Efficacy Only) Paradigm

3+3, or CRM with target pT* = .25, are most likely to choose 
d=3 in all 3 cases because they ignore efficacy 

Case 1: pE(2) = pE(3) = .50, but pT(2) = .10  < .25 = pT(3) 

Case 2: [pE(3) = .30, pT(3) = .25] vs [pE(4) = .60, pT(4) = .35] 

Case 3:  All doses are inefficacious, with pE(d) < .02 

d=1 d=2 d=3 d=4 d=5

Case Pr(Toxicity) .05 .10 .25 .35 .50

1 Pr(Efficacy) .20 .50 .50 .50 .50

2 Pr(Efficacy) .20 .25 .30 .60 .65

3 Pr(Efficacy) .00 .01 .01 .02 .02



In Words: A phase I design that uses Toxicity but 
ignores Efficacy when choosing an “optimal” dose 
d, like the 3+3 or CRM, is very likely to . . . 

Case 1: Choose a dose that is too high if the pE(d) 
curve has a plateau 

Case 2: Choose a dose that is too low if the pE(d) 
curve increases sharply for doses near the (Toxicity
based) MTD 

Case 3: Fail to stop the trial early if all doses are 
ineffective with very small pE(d)

Three Examples of Nutty Flaws with the Phase I 

(Toxicity Only) → Phase II (Efficacy Only) Paradigm



A Likely Catastrophe in Case 2

d=1 d=2 d=3 d=4 d=5

Case 2
Pr(Toxicity) .05 .10 .25 .35 .55

Pr(Efficacy) .20 .25 .30 .60 .65

1. A 3+3 algorithm, or CRM with pT* = .30, are most 
likely to choose d=3 or d=2  because both 
methods ignore Efficacy →

2. d=4 is discarded, despite the fact that it 
DOUBLES the response rate from .30 to .60 →

3. Phase II then shows that the agent at d=3 is 
“promising” →

4. A large, expensive phase III trial concludes 
that the new agent at d=3 does not improve 
survival. This is a disastrous false negative.



Expansion Cohorts

or 

“There is No Design Like No Design”

1. Use a  toxicity-based phase I design (3+3, CRM, 
etc.) to determine an MTD.

2. Behave as if the MTD is known with certainty to be 
the “right” dose (according to either explicit or 
unstated criteria)

3. Treat a fixed number of patients (10, 50, 100, or 
whatever) at the MTD.  



4. Do not bother with any experimental design, or 
specific monitoring/stopping rules for either poor 
safety or low efficacy

5. Once all patients have been treated, analyze the 
data any way you like,  if possible, cherry picking a 
patient subset with a high  response rate.

6. Use the data, and your analyses, to submit a New 
Drug Application to the FDA.

Expansion Cohorts

or 

“There is No Design Like No Design”



Why Use Expansion Cohorts?

Usual Stated Motivation

▪ Once the MTD has been “determined” treating more 
patients at the MTD will give a more reliable estimator 
of Pr(DLT | MTD), Pr(Response | MTD), and PK data

▪ Since the MTD is “safe” treating more patients at the  
MTD is perfectly ethical

Actual Motivation

▪ It avoids designing a phase II trial, especially futility 
rules that might say a new drug isn’t any good

▪ It pretends that the MTD is known with certainty to 
be the “best” dose

▪ It avoids the painful process of thinking

▪ A statistician is not needed



Some Problems with Expansion Cohorts

1. With  a typical phase I  design, Pr(Toxicity | MTD) is 
estimated very unreliably  →

There is a non-trivial probability that the MTD is too toxic, 
since the sample size at the MTD is very small

2. No 3+3 algorithm has any criterion for “right dose.” It is just 
a very vaguely described algorithm.

3. The CRM has the “optimal dose” criterion that 
E{pT(dose)|data} is close to p* , but it ignores pE(dose).

4. Example: 

What if the trial ends with 1/6 toxicities at the MTD and then 7 
DLTs occur in the first 10 expansion cohort patients, for a total 
of 8 / 16 (50%) toxicities. 

Does any sensible physician want to treat 90 more patients at 
a dose where 8 / 16 DLTs were observed ? 



Expansion Cohorts:  

A  reductio ad absurdum

What if you observe 0 responses in phase I ?

At the MTD of 200 mg/m2 , where 0/6 responses were 
observed, does any sensible physician really want to 
treat 100 more patients at that dose? 

Dose mg/m2 # Toxicities / # Patients # Responses / # Patients

100 0 / 3 0 / 3

200 1 / 6 0 / 6

300 2 / 6 0 / 6

400 — —



Expansion Cohorts: Yet Another Problem!!

True Toxicity and Efficacy probabilities

▪ The 3+3, or CRM with target .20 to .30, are most likely to 

choose d=3 or d=4, and much less likely to choose d=5.

▪ If the MTD chosen in phase I is d=4, then an expansion 

cohort of 100 patients are  treated at a suboptimal dose with 

pE
true(4) = .35, which is half pE

true(5) = .70. 

d=1 d=2 d=3 d=4 d=5

pT
true .05 .10 .20 .30 .40

pE
true .05 .10 .25 .35 .70



General Phase I-II Paradigm

1. Evaluate the effects of treatment regime r = 

dose, dose pair, or (dose, schedule) on a 2- or 3-

dimensional outcome  Y including both Efficacy

and Toxicity variables.

2. Choose optimal r for each new patient cohort  

adaptively based on all data observed thus far.

3. Base the adaptive decisions on an explicit 

criterion function f(r , data), such as an Efficacy-

Toxicity trade-off or posterior mean utility.



4. Impose regime/dose admissibility rules based on 

marginal rates of Toxicity and Efficacy.

5.   Tailor the design (treatment regimes, 

outcomes, sample size, cohort size, decision rules) 

to the actual trial at hand.

6.  Use computer simulation to calibrate the 

design and establish frequentist operating 

characteristics :

“It is better to kill computer generated patients rather 

than real ones when calibrating design parameters.”   

Peter F. Thall

General Phase I-II Paradigm



Establishing a Prior

Y  = outcome vector, including binary, categorical, 
ordinal, or event time outcomes

t = “regime” = treatment, dose, schedule, (dose, 
schedule), a multi-cycle regime

q   = model parameter vector

x = fixed hyper-parameters: Usually qj ~ N(m, s2),   
Gamma(a, b), or Beta(a, b) for each j.

Bayes Theorem : For likelihood f(Y | t, q)  and prior p(q | x), 
the posterior  is

f(q | Y1,. . . , Yn, t, x ) =  c  f(Y1 | t1, q) . . .  f(Yn | tn, q) p(q | x) 



Establishing a Prior

General Strategy

1. Elicit prior means of various probabilities.

2. Use the elicited means to solve for the means 

m1, ... mp in x

3. Use prior effective sample size (ESS) and 
preliminary trial simulations to calibrate the hyper-
variances s1

2, . . . , sp
2 in x



Accounting for both Efficacy and Toxicity

Dose 1 No Efficacy Efficacy

No TOX .45 .25

TOX .25 .05 .30

.30

Dose 2 No Efficacy Efficacy

No TOX .45 .25

TOX .05 .25 .30

.50

Implication:  Looking at Pr(TOX | d) is not enough. 



Accounting for both Efficacy and Toxicity

1. Toxicity Only: Pr(TOX|d1) = Pr(TOX| d2) = .30 
→ d1 ~ d2 (A usual phase I design’s conclusion) 

2. Optimist: Define  “Response” = [Efficacy, No TOX] →
Since Pr(Response |d1) = Pr(Response | d2) = .25 
→ d1 ~ d2 (An optimist’s conclusion)

3. Reality: Pr(TOX|d1) = Pr(TOX| d2) = .30    and
Pr(Efficacy|d2) = .50 > .30 = Pr(Efficacy| d1) 
→ d2 obviously is MUCH MORE DESIRABLE than  d1

But . . . how should one quantify dose desirability?



Patient Outcome: YE = I(Efficacy) and YT = I(Toxicity) 

pE(d,q) = Pr(Efficacy | d,q)   

pT(d,q) = Pr(Toxicity | d,q )

Bivariate model for Pr(YT=a, YE=b | d, q ) 

for a, b = 0, 1

Non-informative prior on q with specified prior 

effective sample size close to 1

Desirability: Efficacy-Toxicity Probability Trade-Offs  

(Thall and Cook, 2004; Thall et al., 2014)



The physician must specify  Nmax, cohort size, 

• a fixed lower limit pR*  on pR(d,q) 

• a fixed upper limit pT*on pT(d,q)

• several equally desirable fixed (pR, pT) pairs 

A dose d is Unacceptable if 

1) it is likely that d is unsafe :

Pr{ pT(d,q) > pT* | data } > .90, or 

2) it is likely that d is inefficacious :

Pr{ pE(d,q) < pE* | data } > .90 

Dose-Finding Based On  Efficacy-Toxicity Trade-Offs  

(Thall and Cook, 2004; Thall et al., 2014)



Goal:   Choose the “best” acceptable dose

How “best” is defined constructively : 

▪ Three equally desirable fixed  (pE, pT) pairs are used to 

define Efficacy-Toxicity trade-off (“desirability”) contours.

▪ The current most desirable acceptable dose is chosen for 

each new cohort.

▪ The final most desirable acceptable dose is selected at 

the end of the trial.

EffTox: Dose-Finding Based On  Efficacy-Toxicity Trade-Offs 

(Thall and Cook, 2004; Thall, et al., 2014)



Establishing a  Target Trade-Off Contour

1. Specify three equally desirable probability pairs

p1* = (p1,E, 0), p2* = (1, p2,T ),  p3* = (p3,E, p3,T ),  with

2. Use bisection method to solve for p with f(p3,E, p3,T ) = 0

3. The target contour is C0 where f(p) = 0.  For real number z, 

Cz = the contour of p values in [0, 1]2 with f(p) = z.



Target Efficacy -Toxicity Trade-Off Contour

p1*

p3*

•

•
•

C

p2*



Use C to Generate a Family of Trade-Off Contours

•

•

•
•

C



Which of these two doses is more desirable?

•

•dose1

dose2



•

•

Which of these two p pairs is more desirable?

dose1

dose2



Trial Conduct

1) Physician chooses starting dose

2) A dose is Acceptable if 

a) it has both acceptably low toxicity and acceptably high 

efficacy, or

b) it is the next higher untried dose and has acceptably 

low toxicity

3) Treat each cohort at the most desirable acceptable dose

4) Do not skip untried doses when escalating

5) If no dose is acceptable ➔ Stop the trial and do not select 

any dose (combined futility and safety monitoring)

6) At the end, select the most desirable acceptable dose



Re-Visiting Doses 

The dose chosen for the next cohort may be

higher than, the same as, or lower than 

the current dose

After de-escalation due to excessive toxicity or 

low efficacy, if subsequent outcomes at a lower 

dose are sufficiently safe and efficacious, then 

the algorithm may re-escalate

This is what makes any reasonable adaptive 

dose-finding method less stupid than any 

3+3 algorithm



Pathological Trade-Off Contours: A Decade of Dysfunction

For pE > .60, this contour requires a HUGE increase in pE for a 

small increase in pT → In scenarios where pE(d) increases 

steeply with d and  pT(d) is low, the algorithm gets stuck →

A much steeper contour is needed.



A Phase I-II Trial in Advanced Prostate Cancer 

d = 1, 2, 4, 6.6, 10 mcL/kg of Magic Agent ( 5 dose levels )

Elicited prior means mE
(e) = (.20, .40, .60,.80, .90) and

mT
(e) = (.02, .04, .06, .08, .10), prior ESS = .90

Nmax =39, cohort size = 3, first cohort treated at d = 1

.30 = Upper Limit on pT(d), .50 = Lower Limit on pE(d)

Target Contour Trade-off pairs giving pathological contours

(pE, pT)*  = (.50, 0), (.70, .10), (1, .30)

Target Trade-off pairs giving non-pathological contours

(pE, pT)*  = (.50, 0), (.70, .25), (1, .64)



Bad Contour :  

Not Steep Enough

Good Contour :  

Steep Enough



Dose = 1 Dose = 2 Dose = 4 Dose = 6.6 Dose = 10

Pr(Toxicity)

Pr(Response)

Desirability

% Select

Dose = 1 Dose = 2 Dose = 4 Dose = 6.6 Dose = 10

Pr(Toxicity)

Pr(Response)

Desirability

% Select

Bad Contour:  Not Steep 

Enough  The algorithm gets 

stuck at the middle dose = 4, 

and is unlikely to escalate to a 

more desirable higher dose

Good Contour :  Steep Enough



Prior Effective Sample Size (ESS)
(Morita, Thall and Mueller, 2008)

A fundamental question in Bayesian statistics: 

How much information is contained in the prior?

Intuitive Motivation for ESS : Saying Beta(a, b) has ESS = a + b

implicitly refers to the well-known fact that  

θ ~ Beta(a, b) and Y | θ ~ Binom(n, θ)  →

θ | Y, n 〜 Beta(a +Y, b +n-Y)  which has ESS = a + b + n

But for many commonly used parametric Bayesian models 

it is not obvious how to determine the ESS of the prior.



Prior Effective Sample Size (ESS)
(Morita, Thall and Mueller 2008)

Example:  

Usual normal linear regression model, 

E(Y | X) = b0 + b1 X  

var(Y)  = s2
→ θ =(b0 , b1 , s2 )    with 

(b0 , b1 ) ~ Biv Normal,     s2 ~ Inverse X2

For prior p(q | x), the hyperparameter has 

dim(x) = 2+3+1 = 6. 

What is the prior ESS for given x ? 



Prior Effective Sample Size (ESS)
(Morita, Thall and Mueller 2008)

A simple algorithm: Use the method of moments 

For each of several probabilities 

p1(d,q), . . . , pk(d,q),  approximate prior{pj(d,q)} 

by a Beta(a, b) so  

E { pj(d,q) | x } = m = a/(a+b)  

var { pj(d,q) | x } = s2 = m(1- m)/(a+b+1) ➔

ESS ~ a+b = m(1- m)/ s2  -1

This gives k ESS values.  Just use their mean.



For a,b = 0,1,      x = dose, 

pa,b (x, q) = Pr(YE = a, YT = b | x, q)

= pE
a(1-pE)1-a pT

b(1-pT)1-b    + (-1)a+b pE(1-pE)pT(1-pT) (ey-1)/(ey+1)

with logit pT(x,q) =  mT + xbT ,   logit pE(x,q) =  mE + xbE,1 + x2bE,2

Model parameters:      q = (mT , bT , mE , bE,1 , bE,2 , y), p = 6

The model for the allogeneic stem cell transplant trial in Thall 

and Cook (2004) has prior  ESS = 8.9, equivalent to 3 

cohorts of patients!! This prior was far too informative

An Overly Informative  Prior



A Strategy for Determining Priors in the Eff-Tox

Regression Model

Fix the prior means

The new EffTox V5.0.1 GUI asks you to input :

1. Prior means of pE(d,q) and pT(d,q) for each d

2. The prior mean ESS that you desire for the pE(d,q) 

marginal and also for the pT(d,q) marginal

The EffTox program computes the hyperparameters 

that give your desired ESS values.



Dose 

1 2 4.4 6 10

Prior

ESS
Desira-

bility
41 57 96 78 66 None

10 % Sel 0 0 15 68 17 0

.90 % Sel 0 1 45 38 11 5

.02 % Sel 0 4 26 18 34 17

Using ESS to Calibrate the Prior:

Applying the Three Bears Criterion 

(Nmax=39, c=3)

Just 

Right !

Too  

Big

Too  

Small



Where to find the latest version 

EffTox V5.0.1  of the program

https://biostatistics.mdanderson.org/SoftwareDownload

https://biostatistics.mdanderson.org/SoftwareDownload


Example of the GUI

Applying the Three Bears Criterion for Nmax = 39 and c = 3



An EffTox Phase I-II Trial of Lenalidomide for 

Myeloma Patients Undergoing Autologous Stem 

Cell Transplant 

Preparative regimen = fixed dose of IV melphalan  + oral 

Lenalidomide at one of the doses { 25, 50, 75,100 } mg/m2

on each of days -8, -7, …, -2 before transplant

Toxicity = Regimen-related death, graft failure, or grade 3,4 

atrial fibrillation, deep venous thrombosis, or pulmonary 

embolism within 30 days post transplant

Efficacy =  Alive and in CR at day 30 post transplant

.20 = Upper Limit on pT(x), .15 = Lower Limit on pE(x)

Trade-off pairs (pE, pT)  = (.15, 0), (.30, .15), (1, .50)

Nmax = 60, cohort size = 3, first cohort treated at 25 mg/m2



Lenalidomide Autologous SCT Trial: 

Simulation Scenario 1

Dose = 25 Dose = 50 Dose = 75 Dose = 100

Pr(Toxicity)

Pr(Response)

Desirability

% Selected



Lenalidomide Autologous SCT Trial: 

Simulation Scenario 2

Dose = 25 Dose = 50 Dose = 75 Dose = 100

Pr(Toxicity)

Pr(Response)

Desirability

% Selected



Lenalidomide Autologous SCT Trial: 

Simulation Scenario 3

Dose = 25 Dose = 50 Dose = 75 Dose = 100

Pr(Toxicity)

Pr(Response)

Desirability

% Selected



▪ CRM has target .30 for pT

▪ EffTox has upper limit .40 on pT and lower limit .20 on  pE

Simulation Comparisons of 3+3, CRM, and EffTox

Dose Selection %





pE
true pT

true

.05 .05

.10 .10

.30 .20

.50 .30

.70 .35

Comparing Dose Selection % for Four Methods: 

Simulation Results in One Scenario (N= 60 patients)

Dose Finding Methods 

that Ignore Efficacy



Utility-Based Phase I-II Trials

Medical Practice 

• Efficacy and Toxicity both matter for the patient →

Any reasonable statistical method should use both.

• Utilities and trade-offs underlie all medical decision-making 
→ They are natural tools for statistical decision-making.     

Advantages of Using Utilities

1. U(Toxicity, Efficacy), or U(Tox, Eff1, Eff2) maps a 
multidimensional outcome to a 1-dimensional criterion that

• quantifies risk-benefit trade-offs 

• can be used to make decisions about doses, or more 
generally about treatments.

2. In practice, physicians do not write down their utilities, 
unless they are elicited by a statistician designing a clinical 
trial. Physicians LOVE to give their numerical utilities. So, 
their utilities now are made EXPLICIT.



Mean Utility    

=   U(0,0) p00 +  U(0,1) p01  +  U(1,0,) p1,0  +  U(1,1) p1,1 

=  40 x .40   +  0 x .10   +   100 x .30   +  70 x .20 

=  16 + 0 + 30 + 14 =  60 

Computing Mean Utility

Toxicity

No Yes

Efficacy
No 40 

p00 = .40 

0
p01 = .10

Yes 100 
p10 = .30

70
p11 = .20



But we do not know (p00, p01, p10, p11),   so we write down 
a Bayesian model with parameters q 

p(a,b | d, q) = Pr(YT = a, YE = b | d , q)     for a, b = 0 or 1,  

and use it to compute the mean utility of each d : 

U(d, q) =          p(1,1 | d, q) U(1,1)    +   p(1,0 | d, q) U(1,0)   + 

p(0,1 | d, q) U(0,1)    + p(0,0 | d, q) U(0,0) 

As dose-outcome data are observed during a clinical trial, 
q and U(d, q) estimated, for making decisions.

Toxicity

No Yes

Efficacy
No 40 

p00 = ? 

0
p01 = ?

Yes 100 
p10 = ?

70
p11 = ?



But we do not know q → We apply Bayesian Statistics to 
decide which dose is “optimal,” as follows:

The mean utility of dose d given parameters  q is

u( d, q ) = E{ U(Y) | d, q ) } = Sy U(y) P(Y=y | d, q )

The posterior mean utility of dose d, given the data, is  

f (d, data ) = Eq { u( d, q ) | data }

The dose with largest posterior mean utility is given to the 
next cohort of patients.

As new data are obtained during the trial, we repeat this 
computation, learn sequentially about the dose-utility 
function, and the “optimal” dose may change.

The Meanings of “Mean Utility”



Adaptive Randomization to Deal With Stickiness

Well  Known Fact 

Any sequentially adaptive statistical decision rule 

based on an optimality criterion may risk getting 

stuck at a sub-optimal (locally optimal) action. If so, 

one fails to adequately explore the action space and 

identify a truly optimal action:  “Stickiness”, or the 

“Exploitation versus Exploration” problem.

Practical Solution

After an in initial burn-in, use sequential Adaptive 

Randomization (AR):  Treat each new cohort at dose 

d chosen randomly with probability proportional to        

f (d, data) 



Utility Based Sequential Decision Making 

1) Goal: Given a set of experimental treatment 
regimes {r1, . . . , r k} (doses, schedules, (d,s) 
combinations, etc.), sequentially choose a “best” 
regime for each successive cohort of patients, in 
real time, based on 2 or 3 or more Efficacy and 
Toxicity outcomes

2) Utilities : Use elicited utility U(Efficacy,Toxicity), to 
choose each cohort’s regime

3) Bayesian Computations:  Map (r,data) to the 
posterior mean utility f (r,data) of each treatment 
regime r , or find the regime r that has largest  

p (r, data) = Pr [ u(r, q) = max {u(r*, q)} | data ]



Utility Based Sequential Decision Making 

4)    Maximize either f(r,data) or p(r,data)  to 
choose the best r

5)    Acceptability : Restrict  selections to t that are 
acceptable, in terms of  safety and efficacy. If all t
are  “unacceptable” then stop the trial.

6) Sequential Adaptive Randomization (AR) : 

After an initial burn-in,  repeatedly randomize
among doses with u(r,data) close to the maximum, 
to avoid getting stuck at a suboptimal regime.



A Phase I-II Pediatric Radiation Therapy Trial

Diffuse Intrinsic Pontine Gliomas (DIPGs)

▪ Very aggressive brain tumors

▪ No treatment with substantive anti-disease activity 
exists 

▪ Radiation Therapy (RT) is standard treatment, 
but is mainly palliative 

▪ RT dose-toxicity & dose-efficacy profiles are not 
well understood

Subjects: Children, median age = 5 years, with DIPGs

Three RT dose levels: “Biologically Equivalent Doses” 
in Gy, given serially per a fractionation schedule



Efficacy = # improvements in :

• Clinical Symptoms 

• Radiographic Appearance of the Tumor 

• Quality of Life 

→ YE = 0, 1, 2, or 3 

Toxicity Defined in terms of fatigue, nausea/vomiting, 
headache, skin toxicities, blindness, brain edema or 
necrosis with YT =  Low, Moderate, High, or 
Severe

Both Efficacy ( YE ) and Toxicity (YT ) are scored by 
day 42

Number of  (Efficacy, Toxicity) outcomes = 3x4 = 12

A Phase I-II Pediatric Radiation Therapy Trial



U(Toxicity, Efficacy) is used to make decisions adaptively in 
the trial (“learn-as-you go” )

1)  Decide which radiation does are acceptable

2) Choose best dose for each cohort of 3 children: “Best” 
means “Has the highest posterior (mean) utility”

Elicited Numerical Joint Outcome Utilities 
of 16 possible outcomes

Toxicity Severity

Low Moderate High Severe

Efficacy
Score

0 50 25 10 0

1 85 50 15 5

2 92 60 20 7

3 100 75 25 10



Question: 

Why not just use “DLT” = {High, Severe} and apply a simple 
dose finding method (e.g. “3+3” or “CRM”) ?

Answer: 

U(0,Moderate) = U(3, High) = 25 → Scoring these two  
outcomes as “No DLT” and “DLT” makes no sense! 

Some Properties of the Utilities

Toxicity Severity

Low Moderate High Severe

Efficacy
Score

0 50 25 10 0

1 85 50 15 5

2 92 60 20 7

3 100 75 25 10



Bivariate Ordinal Dose-Outcome Model

Y1 = Efficacy index {0, 1, 2, 3}

Y2 = Toxicity index  {0, 1, 2, 3} (low,mod,high, severe)   

→ 16 possible (Efficacy, Toxicity) outcomes

x =  dose,  indexed by 1,2, …, J, 

pk,y,x = Pr( Yk = y | x, q)   for k =1, 2



Bivariate Ordinal Dose-Outcome Model



Establishing Priors

Elicited prior mean outcome probabilities for the RT trial 

Computing Prior Hyperparameters

24 elicited probabilities,    p=19 hyperparameters :

1. Estimate19 prior means from the elicited probabilities

2. Calibrate the hyper-variances to ensure small overall prior 
ESS



Approximating each prior(pk,x,y) as a beta →

Prior ESS values were 0.31 to 0.70, with mean 0.42. 

A 10% limit was imposed on Pr(High or Severe toxicity) →

x unacceptably toxic if 

▪ Nmax = 30. Treat the first 3 pats. at x =1, then adapt, do not 
skip dose level x =2 when escalating at the start.

▪ AR applied for doses with posterior mean utility close to 
maximum

▪ Posteriors computed using MCMC with Gibbs sampling.

Radiation Therapy Trial Conduct 



Operating  Characteristics of the RT Trial Design



Operating  Characteristics of the RT Trial Design

All RT doses 

are to toxic



Conclusions About Utility-Based Designs

Utilities

Using joint utilities of (Efficacy, Toxicity) is vastly 
superior to using Toxicity only and ignoring Efficacy. 

Adaptive Randomization

Randomizing among doses with posterior mean utility 
close to the maximum is insurance against cases 
where the greedy algorithm gets stuck at an inferior 
dose.

Safety and Futility

The marginal probability rules work extremely well to 
screen out unsafe or ineffective doses



Statistical Design Characterization IQ

Phase I-II Using Efficacy-
Toxicity Trade-Offs or 

Utilities

Honest, Sensible, and 
Useful, But Not A Panacea

120

Phase I Using A Model-
Based Toxicity-Only 

Method

Reasonably Intelligent, 
But Flawed Because 
Efficacy is Ignored

100

Phase I Using
Any “3+3” Algorithm

Dumb As a Sack of 
Hammers. 

Should Be Illegal.

80

A Clinical Trial Treatment Development Design Hierarchy
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Bayesian  Designs for Phase I-II 
Clinical Trials
A Half-Day Short Course

2020 ASA Biopharmaceutical Section Regulatory-Industry Statistics 
Workshop

Peter F. Thall and Ying Yuan
Department of Biostatistics

M.D. Anderson Cancer Center

Textbook: Yuan, Nguyen, and Thall
Bayesian Designs for Phase I-II Clinical Trials

Chapman & Hall/CRC Biostatistics Series, 2016

Lecture Schedule  ( Eastern Standard Time )

Lecture 1:   2:00 – 2:50         Thall
• Problems with the Phase I à Phase II paradigm
• Phase I-II designs

( 5 minute break)

Lecture 2:  2:55 – 3:40         Thall
• The EffTox phase I-II design
• Utility based phase I-II designs

(10 minute break)

Lecture 3:  3:50 – 4:45 Yuan
• Model assisted phase I-II designs
• Phase I-II designs for immunotherapies

( 5 minute break )

Lecture 4:  4:50  – 5:30 Yuan
• Tissue agnostic phase I-II designs
• Handling late onset toxicity and efficacy
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OBD vs. MTD

n For targeted and immune therapies, the 
conventional assumption that efficacy increases 
with the dose may not hold
l Efficacy often plateaus or even decreases at high 

doses
l To obtain optimal treatment effect, immunotherapy 

and targeted agents are not necessarily 
administered at the maximum tolerated dose (MTD)

n The appropriate objective of dose finding trials 
for immunotherapy and targeted therapy is to 
find the Optimal Biological Dose (OBD)

OBD vs. MTD
Require a paradigm shift !
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Elements of phase I-II trial design
1. Toxicity and efficacy outcomes that characterize potential 

risks and benefits of the treatment being studied
2. Risk-benefit trade-off criterion that characterizes and 

quantifies the trade-off between efficacy and toxicity for each 
dose

3. Statistical model describing the dose-toxicity and dose-
efficacy relationships

4. Adaptive decision rule that determines the best dose for the 
next cohort,  based on the (dose, toxicity, efficacy) data from 
all previous patients

5. Admissibility rules that protect patients in the trial from 
unacceptably toxic or inefficacious doses

6. Stopping rule that terminates the trial early if the all doses 
being considered are unacceptably toxic or inefficacious

Yan, F., Thall PF, Lu KH, Gilbert MR and Yuan, Y. (2018) Phase I-II clinical trial design: A state-of-the-art paradigm for dose finding.
Annals of Oncology , 29, 694-699.

Phase I-II trial design

Yan, F., Thall PF, Lu KH, Gilbert MR and Yuan, Y. (2018) Phase I-II clinical trial design: A state-of-the-art paradigm for dose finding.
Annals of Oncology , 29, 694-699.
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Model-Assisted Phase I-II Trial Designs
n U-BOIN design
n BOIN12 design

Zhou, Y., Lee. J.J. and Yuan, Y. (2019) A Utility-based Bayesian Optimal Interval (U-BOIN) Phase I/II Design to Identify the 
Optimal Biological Dose for Targeted and Immune Therapies. Statistics in Medicine, 38(28):5299-5316. 
Lin R, Zhou Y, Yan F, Li D and Yuan Y (2020) BOIN12: Bayesian Optimal Interval Phase I/II Trial Design for Utility-Based Dose
Finding in Immunotherapy and Targeted Therapies, JCO precision oncology, minor revision invited 
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Model-assisted designs refer to a class of design that uses a statistical model 
to derive the design for efficient decision making, similar to model-based design; 
but like the algorithm-based design, its dose escalation and de-escalation rule 
can be pre-determined before the onset of the trial, and thus can be implemented
as simple a way as the algorithm-based designs. 

U-BOIN design

Zhou, Y., Lee. J.J. and Yuan, Y. (2019) A Utility-based 
Bayesian Optimal Interval (U-BOIN) Phase I/II Design 
to Identify the Optimal Biological Dose for Targeted 
and Immune Therapies. Statistics in Medicine, 
38(28):5299-5316. 
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Toxicity and efficacy outcomes

n Consider a phase I-II trial with ! prespecified doses
n Let "# = 0,⋯ , ( − 1 denote a Q-level toxicity 

endpoint, where a higher level represents a more 
severe toxicity

n Let "+ = 0,⋯ , , − 1 denote the R-level efficacy 
endpoint, where a higher level represents a more 
desirable response

n ("#, "+) can be equivalently represented by a 
single variable " with / = ,×( levels
l (no tox, eff), (no tox, no eff), (tox, eff), (tox, no eff), 

Efficacy-toxicity model

n Define !"# = Pr(( = )|+ = ,), where d is the 
dose level

n We assume that Y follows a Dirichlet-
multinomial model
( = )|+ = , ∼ /0123456371(!"8,⋯ , !";)

!"8,⋯ , !"; ∼ <3=3>ℎ1@2(78,⋯ , 7;)
where ∑#B8; 7# = 1 to have a vague prior with prior 
sample size of 1. 
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Efficacy-toxicity model

n At an interim decision time, assume that nj
patients have been treated at dose j, among 
which njk patients had outcome ! = #.

n Given the interim data $% = ('%(,⋯ , '%+), the 
posterior is
-%(,⋯ , -%+ |$% ∼ $0102ℎ456(7( + '%(,⋯ , 7+ + '%+)

Toxicity Efficacy

PD
(YE = 0)

SD
(YE = 1)

CR/PR
(YE = 2)

No (YT = 0) !" =20 !$ =70 %& =100

Yes (YT = 1) %' =0 !( =30 !) =60

n Use utility to measure the desirability (i.e., risk-
benefit tradeoff) of the doses

Risk-benefit tradeoff

Toxicity Response

No
(YE = 0)

Yes
(YE = 1)

No (YT = 0) !$ =30 %& =100

Yes (YT = 1) %* =0 !" =50
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Utility
n Let !" denote the utility ascribed to outcome # = %, with 

!&=100 (most desirable) and !'=0 (least desirable) 
n The true mean utility (i.e., desirability) for dose j is given 

by

() = *
"+&

'
!",)"

n The OBD is the dose with the highest desirability
n The estimate of desirability is given by

-() = *
"+&

'
!".(,)"|1))

Why utility?
Theorem An alternative approach of quantifying the 
desirability of dose ! based on the marginal probability of 
toxicity "#,% and the marginal probability of efficacy "&,%, i.e.,  

'%( = "&,% − +"#,%, 
is a special case of the utility approach with ,- + ,/ = 100
and + = ,-/,/. 

Lin R, Zhou Y, Yan F, Li D and Yuan Y (2020) BOIN12: Bayesian Optimal Interval Phase I/II Trial Design for Utility-Based Dose
Finding in Immunotherapy and Targeted Therapies, JCO precision oncology, revision invited 

Toxicity Response
No (YE = 0) Yes (YE = 1)

No (YT = 0) 50 100

Yes (YT = 1) 0 50

'%( = "&,% − "#,%
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Steps to elicit utility
1. Fix the value of the utility for the most desirable 

outcome ! = 1 as $% = 100, and the least desirable 
outcome ! = ' as $( = 0. 

2. Ask clinicians to use these two utilities as a reference to 
score the utility values $),⋯ ,$(,% for the other ' − 1
possible outcomes ! = 2,⋯ ,' − 1 to quantify the risk-
benefit trade-off under each outcome.

Toxicity Response
No (YE = 0) Yes (YE = 1)

No (YT = 0) 30 100

Yes (YT = 1) 0 50

Elicit utility (cont.)

n One possible criticism for using the utility values 
is that they require subjective input. However, 
we are inclined to view this as a strength rather 
than a weakness. 

n This is because the utilities must be elicited 
from the physicians planning the trial, and thus 
their numerical values are based on the 
physician's experience in treating the disease 
and observing the good and bad effects. 
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Elicit utility (cont.)

n The process of specifying the utility requires 
physicians to carefully consider the potential 
risks and benefits of the treatment that underlie 
their clinical decision making in a more formal 
way and incorporate that into the trial. 

n In addition, our simulation study and previous 
studies show that the design is generally not 
sensitive to the numerical values of the utility as 
long as it reflects a similar trend. 

Dose admissibility criteria

n Let !" denote the upper limit of the toxicity rate, 
and !# denote the lower limit of the efficacy 
rate, specified by physicians.

n Dose $ is defined as admissible if the following 
two criteria are satisfied

Safety Pr -" < !" / > 1"
Ef3icacy Pr -# > !# / > 1#

where 1" (e.g., = 0.05) and 1# (e.g., = 0.1) are 
prespecified probability cutoffs.
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U-BOIN design

n U-BOIN is consisted of two seamlessly 
connected stages

n Stage I: dose escalation based on toxicity. The 
objective is to quickly explore the dose space to 
identify a set of admissible doses that are 
reasonably efficacious and safe 

n Stage II: adaptively allocate patients to the 
estimated OBD based on the toxicity and 
efficacy data accrued from both stages I and II

Stage I: dose escalation using BOIN
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Stage II: identify OBD

Two-stage dose-finding algorithm
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Stage I decision table

Decision The number of patients treated at 
the current dose

3 6 9 12

Escalate if No. of DLT <= 0 1 1 2

De-escalate if No. of DLT <= 1 2 3 4

Eliminate if No. of DLT >= 3 4 5 6
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Stage II decision table

Delayed response

n In some trials, YE may require a long time to be 
ascertained

n Consequence: some YE are unavailable at the 
interim time, making adaptive decisions difficult

n Approach
l Use multiple imputation to impute unobserved YE
l Leverage the measure of biological activity (e.g., 

immune response) to impute YE
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BOIN12 design
Another model-assisted phase I-II design

BOIN12 design

Compared to U-BOIN
n BOIN12 is a single-stage design targeting the OBD from 

the beginning of the trial
n BOIN12 generally requires a small sample size, thus is 

particularly suitable when the number of dose is larger 
(e.g., >3)

n U-BOIN, however, is a good choice when 
l The MTD is of substantial interest
l The number of doses is small (≤ 3)
l Interested in collecting some data (e.g., PK/PD) over multiple 

doses 

Lin R, Zhou Y, Yan F, Li D and Yuan Y (2020) BOIN12: Bayesian Optimal Interval Phase I/II Trial Design for Utility-Based Dose
Finding in Immunotherapy and Targeted Therapies, JCO precision oncology, minor revision invited 
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Toxicity and efficacy outcomes
n Let !" = 0,⋯ , ' − 1 denote a Q-level toxicity 

endpoint, where a higher level represents a 
more severe toxicity

n Let !* = 0,⋯ , + − 1 denote the R-level efficacy 
endpoint, where a higher level represents a 
more desirable response

n (!", !*) can be equivalently represented by a 
multinomial variable ! with . = +×' levels

! = 0|2 ∼ 456789:;8<6 => 2 ,⋯ , =? 2 , 0 = 1,… , .

Lin R, Zhou Y, Yan F, Li D and Yuan Y (2020) BOIN12: Bayesian Optimal Interval Phase I/II Trial Design for Utility-Based Dose
Finding in Immunotherapy and Targeted Therapies, JCO precision oncology, minor revision invited 

n Use utility to measure the desirability of the 
doses

Risk-benefit tradeoff

Toxicity Response

No
(YE = 0)

Yes
(YE = 1)

No (YT = 0) !" = 30 !$= 100

Yes (YT = 1) !% = 0 !& = 50
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Quasi-binomial model for utility
n Let !",… , !% denote the utility ascribed to the four 

possible outcomes
n The mean utility for dose d is given by

! & = !"(" & + !*(* & + !+(+ & + !%(% &
n Define standardized utility !∗ & = !(&)/100, such that 

!∗ & ∈ [0, 1] and is a weighted average of (("(&), 
(*(&), (+(&), (% & )

n !∗ & thus can be viewed as a probability and modelled 
using the binomial distribution with “quasi-binomial” 
data (5 & , 6 & ), where 

5 & = !"7" & + !*7* & + !+7+ & + !%7%(&)
100

and 6 & is the number of patients treated at &.

Quasi-binomial model for utility

n Thus, the quasi-binomial likelihood of the 
observe data !(#) is

% ! # &∗ # ∝ &∗ # )(*) 1 − &∗ # - * .)(*)

n Under the Bayesian framework, assign &∗(#) a 
Beta prior, i.e., &∗ # ∼ 0123 4, 6 , the posterior 
distribution of &∗(#) arises as, 
&∗ # ∣ ! # ∼ 0123 4 + 9 # , 6 + : # − 9 #
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Adaptive decision rule

Table 1. Optimal dose escalation and de-escalation boundaries 
 Target toxicity rate for the MTD 

Boundary 0.1 0.15 0.2 0.25 0.3 0.35 0.4 
le (escalation) 0.078 0.118 0.157 0.197 0.236 0.276 0.316 

ld (de-escalation) 0.119 0.179 0.238 0.298 0.358 0.419 0.479 
	

Adaptive decision rule
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Simulation

n Compare BOIN12, EffTox, and 3+3+CE 

designs

n 3+3+CE design: dose escalation using the 3+3 

design, followed by a cohort expansion at the 

identified MTD using Simon’s two-stage design

n Five dose levels 

n Patients are treated in 

cohorts of 3 with !=36 

Efficacy
Toxicity

Yes No

No "# = #%% "& = '%

Yes "( = )% "' = %
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Correct selection percentage
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Number of patients overdosed
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Using multiple endpoints to improve the 
efficiency of phase I-II design for 

immunotherapy

Liu, S., Guo, B. and Yuan, Y. (2018) A Bayesian Phase I/II Trial Design for Immunotherapy. 

Journal of the American Statistical Association, 113, 1016-1027.

Notation

n Consider a phase I-II trial with ! prespecified doses, 
"# < ⋯ < "&, under investigation.

n Let '( denote the binary toxicity outcome, with '( = 1
indicating toxicity, and = 0 otherwise.

n Let ', denote the tumor response, with ', = 0, 1, and 2 
indicating PD, SD and PR/CR, respectively.

n Let '. denote a measure of the immune response (e.g., 
the count of CD8+ T-cells or the concentration of 
cytokine), which takes a real value after appropriate 
transformation.

n Adaptive decisions in the trial (e.g., dose assignment 
and selection) are based on the behavior of the trinary 
vector ('., '(, ',) as a function of dose ".
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Factorization

n To reflect the fact that in immunotherapy, 
clinical responses rely on the activation of the 
immune system, the joint distribution  
["#, "%, "& |(] is factorized as

"#, "%, "& (, * = "# (, *, ["%, "&|(, "#, *-]

where * is the vector of the parameters, and *,
and *- are subvectors of *.

Model for immune response YI

n Model immune response ["#|%, '(] using an Emax model,

"#|%, *( = ,- +
,(%/0

,1
/0 + %/0 + 2

where ,- is the baseline immune activity in the absence 
of the IT; ,( is the maximum immune activity that is 
possibly achieved by the IT above the baseline activity 
(i.e., 3456); ,1 is the dose that produces half of the 
maximum immune activity (i.e., 378-); ,9 is the Hill factor 
that controls the steepness of the dose-response curve; 
and 2 is the random error, which is normally distributed 
with a mean of 0 and variance :1, i.e., 2 ∼ <(0, :1).
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Latent variable model for YT and YE

n Let !" and !# denote two continuous latent variables 
that are related to $" and $#, respectively, as follows,

$" = &0 () !" < +,
1 () !" ≥ +, and   $# = /

0 () !# < 0,
1 () 0, ≤ !# < 02
2 () !# ≥ 02

where +,, 0, and 02 are unknown cut points.
n !" and !# can be interpreted as the patient's latent 

traits, and $" and $# are the clinical manifestations of 
unobserved !" and !#.

n When !" and !# pass certain thresholds, certain clinical 
outcomes (e. g., toxicity, CR/PR) are observed.

Toxicity model

n !", !$ %, &'] follows a bivariate normal distribution

)!"
!$

&', % ∼ +,
-"(&', %)
-$(&', %)

, 011 01,
01, 0,,

where -2 &', % = 4 !2 &', % , 5 = 4 or 6, is the 
conditional mean of !2.

n -"(&', %) follows a threshold model,
-" &', % = 78 + 71% + : &' > 7< 7,&'

Where 78, 71, 7,, 7< are unknown parameters, and the 
indicator : &' > 7< = 1 when &' > 7<, and 0 otherwise.

n Immune response &' induces toxicity only when it 
passes threshold 7<.
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Efficacy model

n Model the mean structure !"($%, ') for efficacy as
!" $%, ' = *+ + *-$% + *.$%.

n Although the quadratic model cannot directly take an 
increase-then-plateau shape, it works reasonably well 
in that case.

n In addition, as the Emax model allows $% to plateau with 
the dose ', the above model indeed accommodates the 
case that efficacy $" plateaus with '.

Dose admissibility criteria

n To safeguard patients from overly toxic or 
ineffective doses.

n Let !" = Pr('" = 1|*) denote the  toxicity rate 
and !, = Pr(', > 0|*) denote the response 
rate of SD/PR/CR. 

n Let /" denote the upper limit of the toxicity rate, 
and /, denote the lower limit of the response 
rate, specified by physicians.
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Dose admissibility criteria
n A dose ! is defined as admissible if it satisfies both the 

safety requirement
Pr $% > '% D( < *%

and the efficacy requirement
Pr $+ < '+ D( < *+

where *% and *+ are prespecified cutoffs, and D( is the 
observed data from , treated patients.

n We can also add immune response to define admissible 
Pr $- > '- D( < *-

n Let . denote all admissible doses
n Dose assignment and selection are restricted to .

Toxicity Efficacy

PD
(YE = 0)

SD
(YE = 1)

CR/PR
(YE = 2)

No (YT = 0) 20 70 100

Yes (YT = 1) 0 30 60

n Use a utility !(#$, #&, #') to map multi-dimensional 
outcomes into a single index to measure the desirability 
of a dose in terms of the risk-benefit tradeoff.

Desirability and optimal biological dose
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Calculation of utility
n For a given dose !, its true utility is given by

" # ! $ = &# '(), (+, (, - '(), (+, (, !, $ !'()!(+!(,

n Since $ is not known, the utility of dose ! must be 
estimated.

n Given interim data Dn collected from the first . patients 
at a decision-making point in the trial, the utility of dose 
! is estimated by its posterior mean

" # ! D/ = &" # ! 0 1(0|D/) !0

Dose-finding algorithm
n The first cohort of patients is treated at the lowest dose 

!".
n Assume that # cohort(s) of patients have been enrolled 

in the trial, where # = 1,⋯ , ( − 1, and let !* denote the 
current highest tried dose. To assign a dose to the (# +
1)th cohort of patients:
l If the posterior probability of toxicity at !* satisfies 

Pr 01 !* < 31 D4 > 678 and !* ≠ !:, then we treat 
the (# + 1)th cohort of patients at !*;" where 678
denote the probability for escalation based on 
toxicity, and < = =×#.
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Dose-finding algorithm (cont.)

n Otherwise, we identify the admissible set ! and 
adaptively randomize the (# + 1)th patient or 
cohort of patients to dose '( ∈ ! with 
probability

*(,, = Pr[1 '( = max{ 1 '(6 , 78∈ !} |D,]
If A is empty, the trial is terminated. 

n Once the maximum sample size of : is 
exhausted, the dose in ! with the largest 
posterior mean utility ;(1(')|D,) is 
recommended.

Shotgun: A Tissue-Agnostic Phase I-II Design
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Tissue-agnostic trials

n Tissue-agnostic clinical trials have become 
increasingly important in the development of 
targeted therapy and immunotherapy for cancer

n Tissue-agnostic drugs approved by FDA 
l Entrectinib for treating NTRK gene fusion cancer 

patients, regardless of cancer types
l Pembrolizumab for tumors with microsatellite 

instability-high (MSI-H) or mismatch repair decifient
(dMMR) tumors

l Larotrectinib for NTRK gene fusion tumors

Conventional design

n One indication at a time, grossly inefficient !
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Shotgun design

Shotgun design

All-comers
Phase I Dose finding

(BOIN)

Indication j-1

Multiple Cohort Expansions
Phase

Indication 1

Indication j

Indication J

Adaptively borrow information
based on CBHM

……

……

Interim 1 Interim 2 Final analysis
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Stage I: dose escalation using BOIN

All Comers

Stage II: multiple cohort expansion

n After the RP2D is determined, indication-
specific cohort expansions are initiated to 
assess the efficacy of the drug in each of the G 
indications. 

n The toxicity and efficacy data from the patients 
who were treated at the RP2D in stage I will be 
included in stage II to improve the efficiency of 
the design.

n Borrowing information, e.g., using the Bayesian 
hierarchical model (BHM, Thall, et al., 2003), 
across cohorts is attractive
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Bayesian hierarchical model 

n Let !" denote the response rate in indication #, 
!$," denote null response rate that is deemed 
futile, and !&," denote the target response rate 
that is deemed promising.

n BHM           
'"|!" ∼ *+,-.+/0(!")

3" = log !"
1 − !"

− log !$,"
1 − !$,"

3"|3, :; ∼ <(3, :;)
where '" is the number of responses in indication #, # =
1,⋯ , >

Clustered BHM (CBHM)

n The exchangeable assumption underlying the 
BHM, however, is not always appropriate, 
resulting in inflated type I error or low power
l It is not uncommon that that some tumors are 

responsive to the treatment, while others are not 
n CBHM is to address this issue: based on the 

interim data, cluster the cohorts into responsive 
and non-responsive subgroups; and then use 
the BHM to borrow information within each 
subgroup. 
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Clustered BHM (CBHM)

n Clustering Step 
l Bayesian clustering rule: an indication is allocated to 

the responsive cluster ! if it satisfies

Pr $% >
'(,*+',,*

- ./0/ > 0.5 4*
5*,6

7
;

otherwise allocated to the non-responsive cluster 8!, 
where 9% is the interim sample size, :%,- is the 
prespecified maximum sample size of indication ;
for phase II, and < is a tuning parameter 
(recommended < = 2 or 3)

l The interim-sample-size-dependent adaptive cutoff 
improves the performance, borrowing the idea from 
the BOP2 design

Clustered BHM (CBHM)

n Borrowing Step
l Apply the BHM to responsive cluster ! and non-

responsive cluster "! independently
#$|&$ ∼ ()*+,)-. &$ , 0 ∈ ! +2 3!

4$ = log &$
1 − &$

− log &;,$
1 − &;,$

4$|4, <= ∼ >(4, <=)
4 ∼ > 0, 10B , <= ∼ >(10CB, 10CB)

l When the number of indication in a cluster is 1, use 
beta-binomial model.
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Interim go/no-go rule:

Stop the accrual to indication g if
• Pr #$ ≤ #&,$ ()*) < , -$

(futility)

• Pr .$ < /0 ()*) > ,0
(toxicity)

where .$ is the toxicity rate, /0 is 
the toxicity upper limit,  ,0 is a 
probability cutoff, and ,(-$) is the 
optimal probability cutoff taken from 
BOP2 design  (www.trialdesign.org)

Simulation

n 4 doses, and 5 indications with accrual rate of 
3, 2.5, 2, 1.5 and 2 per month

n n=24 for stage I, and maximum n=21 per 
indication 

n Null response rate !",$ = ⋯ = !",' = 0.05, and 
alternative response rate !$,$ = ⋯ = !$,' = 0.3

n Compare shotgun with the convention design 
(3+3 design followed by Simon’s two-stage 
design)
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Performance metrics

n Correct discovery rate (CDR)
!"# = %&'()* +, -+**)-. /01-+2)*0)1

%&'()* +, 3*+'01045 04/0-6.0+41
n False discovery rate (FDR)

7"# = %&'()* +, ,681) /01-+2)*0)1
%&'()* +, 04/0-6.0+41 -860'04)/ 61 3*+'01045

n Adjusted discovery rate (ADR)
9"# = %&'()* +, -+**)-. /01-+2)*0)1 − %&'()* +, ,681) /01-+2)*0)1

%&'()* +, 3*+'01045 04/0-6.0+41
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False discovery rate (FDR)
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Conclusion

n Shotgun design provides a highly efficient and 
flexible Bayesian phase I-II method to develop 
tumor-agnostic drugs
l Eliminates the white space between phase I and 

phase II
l Allows the total number of interim analyses and 

interim times to vary from one indication to another
l Borrows information efficiently and accurately across 

indications using the novel CBHM

Handle Delayed Toxicity and Efficacy 
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Late-onset efficacy and toxicity

n A major impediment to implement adaptive 
designs in practice is that outcomes must be 
observed soon enough to apply the adaptive 
decision rules to choose treatments or doses 
for newly accrued patients.

n This is true for all outcome-dependent adaptive 
trial designs, regardless of the phase and type.

n In phase I-II trials, this problem arises if either 
toxicity or efficacy is not scored quickly, relative 
to the trial’s accrual rate.

Patient 1 (Y1=1)	

Patient 2 (Y2=0)	

Patient 3 (Y3=1)	

Patient 4 (Y4=0)	

t1	 t2	 t3	 t4	 t5	 t6	

TIME	

Challenge: how to treat the new patients while waiting to 
evaluate the outcomes of the previous patients?
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Trial example
n A phase I–II dose-finding to determine the optimal dose of 

three fractionated stereotactic radiation therapy (SBRT) 
doses, given either with or without a novel 
radiomodulating agent. 

n Toxicity is defined as a grade 3 or 4 gastro-intestinal (GI) 
toxicity, occurring within 90 days from the start of therapy.

n Efficacy is defined as stable disease (SD) or better, 
compared to baseline, as evaluated at day 90 from the 
start of therapy.

n Expected accrual rate: 2 patients/month in each arm
n LO-EffTox design was used, and the accrual has been 

completed!
Jin, I.H., Liu, S., Thall, P. and Yuan, Y. (2014) Using Data Augmentation to Facilitate Conduct of Phase I/II 
Clinical Trials with Delayed Outcomes. Journal of American Statistical Association, 109, 525-536. 

Three general approaches

n Weight the observation with incompleted follow-
up with a “partial credit” (Cheung and Chappell, 
2000)
l Weight the observation with its follow-up time

n Model the toxicity and efficacy outcomes as 
time-to-event endpoints (Yuan and Yin, 2009)

n Regard unobserved toxicity and efficacy 
outcomes as missing data and handle them 
using missing data methodology
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Three general approaches

n Weight the observation with incompleted follow-
up with a “partial credit” (Cheung and Chappell, 
2000)
l Weight non-DLT with its follow-up time

n Model the toxicity and efficacy outcomes as 
time-to-event endpoints (Yuan and Yin, 2009)

n Regard unobserved toxicity and efficacy 
outcomes as missing data and handle them 
using missing data methodology

Jin, I.H., Liu, S., Thall, P. and Yuan, Y. (2014) Using Data Augmentation to Facilitate Conduct of Phase I/II 
Clinical Trials with Delayed Outcomes. Journal of American Statistical Association, 109, 525-536. 

Delayed outcomes as missing data

Patient 1 (Y1=1)	

Patient 2 (Y2=0)	

Patient 3 (Y3=1)	

Patient 4 (Y4=0)	

t1	 t2	 t3	 t4	 t5	 t6	

TIME	
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Delayed outcomes as missing data

Delayed outcomes as missing data
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Delayed outcomes as missing data

Advantages of missing-data approach

n Intuitive and natural

n Likelihood based, thus efficient and rigorous

n Very general, can be used with almost any 

adaptive designs to handle delayed outcomes

l phase I (Liu, Yin and Yuan, 2013), phase II (Cai, Liu 

and Yuan, 2014), phase I-II (Jin et al., 2014), ...

n Include the original design without delayed 

outcomes as a special case
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General approach

" "

Notations

n !" and !# denote binary toxicity and efficacy 
outcomes

n $" and $# denote fixed follow-up times for 
assessing toxicity and efficacy

n %" and %# denote times to toxicity and efficacy
n & denote the patient's follow up time, by design 

& ≤ $
n %"( = & ∧ %" and %#( = & ∧ %#
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0 1 2 3

Assessment period UT

follow-up time V

time to toxicity XT

Time

Notations

n Missing data

Notations

n No missing data

0 1 2 3

Assessment period UT

follow-up time V

time to toxicity XT

Time
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Missingness of outcomes

n For  ! = # or $,

%& =
'())(*+ (, -& > /0*1 / < 3& (. 5. , -&7 = / ,

1 (, -& ≤ / ≤ 3& (. 5. , -&7 = -& ,
0 (, -& > / = 3& (. 5. , -&7 = 3& .

0 1 2 3

Assessment period UT

follow-up time V

time to toxicity XT

Time

Missing data mechanism
n Let !" = $ %" = &'((')* denote the missingness 

indicator for + = ,, .
n Three types of missing data mechanism (Little and Rubin, 

2002)
l Missing completely at random (MCAR)} if 

/ !"|%", 1 = / !"|1
l Missing at random (MAR)} if

/ !"|%", 1 = / !"|%",234, 1
l Nonignorable or not missing at random (NMAR)} if

/ !"|%", 1 = / !"|%",564, 1
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Nonignorable missing data
n The missing data induced by delayed outcomes are 

non-ignorable (Yuan and Yin, 2010).
n Formally, Pr #$ = 1|($ = 0 > Pr #$ = 1|($ = 1 . 
n By Bayes’ rule,

Pr ($ = 1|#$ = 0
Pr ($ = 0|#$ = 0 > Pr ($ = 1|#$ = 1

Pr ($ = 0|#$ = 1
That is, the odds of event + decrease if ($ is missing, so 
the missing indicator #$ contains information about the 
future value of ($.

n It is necessary to model the missing data mechanism.

Missing data mechanism
n Missing data induced by delayed outcomes are a 

special type of nonignorable missing data with a known 
missing data mechanism as follows

!" =
$%&&%'( %) *" > ,-'. , < 0" %. 2. , *"4 = , ,

1 %) *" ≤ , ≤ 0" %. 2. , *"4 = *" ,
0 %) *" > , = 0" %. 2. , *"4 = 0" .

That is,

8" = 91 %) *" > ,-'. , < 0" %. 2. , *"4 = , ,
0 :;ℎ2=>%&2

n As a result, we need to model *", the time to toxicity 
and efficacy.
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Model for times to toxicity and efficacy

n Model marginal survival functions !" #"|%" = 1
and !( #(|%( = 1 using piecewise exponential 
distributions
l Partition the follow-up period 0, +, into -, intervals.
l For dose ., assume hazard /,,0 on the 1-th

subinterval, where all /,,0 > 0.
l The marginal survival function for 3, is give by

!, #|., %4 = 1, /,, 5, = 6#7 −9
0:;

<

=,,0 # /,,0 , # > 0

where the weights =,,0 # = ℎ,,0 − ℎ,,0?; if # > ℎ,,0; =,,0 # =
# − ℎ,,0?; if # ∈ [ℎ,,0?;, ℎ,,0); and otherwise =,,0 # = 0.

Bayesian data augmentation

n Imputation step, in which the missing values of 
!" and !# are sampled from their full conditional 
distributions, 

n Posterior step, in which a posterior sample of 
unknown parameters is simulated based on the 
completed data including the imputed !" and 
!#.
l In what follows, we illustrate the Bayesian data 

augmentation approach using the EffTox design.
l The method can be applied to any phase I/II design 

(e.g., utility-based designs).
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Quick review of EffTox design

n Logistic models for marginal distributions of !" and !#
logit )# = +# + -./,# + -1.1,#,
logit )" = +" + -./," + -1.1,"

where )# = Pr !# = 1 - , )" = Pr !" = 1 - and - is
dosage.

n Gumbel model for the joint distribution of !" and !#
)5,6 ≡ Pr !# = 8, !" = 9 = )# 5 1 − )# /;5 )" 6(

)
1 −

)" /;6 + −1 5>6)# 1 − )# )" 1 − )" ?@;/
?@>/ ,

where A parameterized association between !" and !#.

Toxicity-efficacy tradeoff

n !"∗ = 0.15,0 ; !+∗ = 1.0,0.55 ; !,∗ = 0.3,0.3
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Dose assignment rule

n When a new patient arrives, based on 
outcomes from patients who have been treated 
in the trial, update !"#,% and assign that patient 
to the most desirable dose (according to the 
tradeoff).

Imputation step

Three possible missing data patterns
n Both !" and !# are missing,

Pr !" = 1, !# = 1|*+,- = ./,/0//
∑234/ ∑,34/ .2,,02,

,

Pr !" = 1, !# = 0|*+,- = ./,40/4
∑234/ ∑,34/ .2,,02,

,

Pr !" = 0, !# = 1|*+,- = .4,/04/
∑234/ ∑,34/ .2,,02,

,

Pr !" = 0, !# = 0|*+,- = .4,4044
∑234/ ∑,34/ .2,,02,

,

l where 02, = Pr 6" > 8, 6# > 8 !" = 9, !# = : and 
9, : = {0, 1}.



9/24/20

52

Imputation step
n !" is missing but !# is observed, we draw the 

missing value of !"

Pr !" = 1|)*+, =

-.,.0.1
-.,.0.1 + -1,.

34 !# = 1
-.,10.1

-.,10.1 + -1,1
34 !# = 0

where 06+ = Pr 7" > 9, 7# > 9 !" = :, !# = ; and :, ; = {0, 1}.
n !# is missing but !" is observed, we draw the 

missing value of !#

Pr !# = 1|)*+, =

-.,.01.
-.,.01. + -.,1

34 !" = 1
-1,.01.

-1,.01. + -1,1
34 !" = 0

Posterior step

n Given the imputed data, sequentially sample 
the unknown model parameters from their full 
conditional distribution as follows:
l Sample ! sequentially from its posterior distribution 

" !|$ % where ! is the parameters for the 
bivariate toxicity-efficacy model.

l Sample &',), and *, + = 1,⋯ ,/' and 0 = 1, 2
sequentially from its posterior " &, *|$ % .
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Simulation

n Five dose levels with raw doses
! = 2.5, 5.0, 7.5, 10.0, 12.5

n Assume *+ = *, = 6 weeks with accrual rate 
α = 1.5/week.

n /012 = 3×16 = 48 and 7 = 6.
n The trade-off contour, 8 ,was determined by 

fitting a quadratic curve to the trade-off target 
pairs 9+, 9, = 0.15, 0 , 0.45, 0.20 , 1, 0.60 .
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Simulation

n A dose ! is considered acceptable if
Pr $% !, ' > $%|* + > ,% and
Pr $0 !, ' < 2$0|* + > ,0

with $% = 0.25, 2$0 = 0.35 and ,% = ,0 = 0.10.
n We considered 4 different true dose-toxicity and 

-efficacy scenarios.

True toxicity-efficacy scenarios
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Methods for comparison
n “One Level Down” rule: If some of the patients treated at the 

current dose !" have not yet been evaluated fully, i.e. #$,&,'( =
*+,,+-. or #$,/,'( = *+,,+-., then any new patient is treated 
at !"01.

n “Look Ahead” rule:  if all possible values of #& or #/ that 
currently are missing will not change the dose assignment 
decision, then treat any new patient based on that dose 
assignment decision. Otherwise, we make new patients wait 
to be treated or turn them away and treat them off protocol.

n “Complete Case” rule: Use all complete cases, where both #&
and #/ are observed, so compute !345 and treat the next 
patient immediately.

Two performance metrics
n Desirability-weighted selected percentage:

̅" = ∑%&'( "%)%*+  - select .% / .% ∈ 1)%*+

∑%&'( "%)%*+  / .% ∈ 1)%*+

n where "%)%*+denotes the true desirability of dose .% and 1)%*+
denotes the true set of acceptable doses. This criterion 
quantifies dose selection reliability and thus potential benefit for 
future patients.

n The ratio 23/25 where 23 and 25 denote the number of 
patients who experienced efficacy and toxicity, respectively. 
This criterion quantifies benefit to the patients in the trial, hence 
may be considered an index of ethical desirability.
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Results
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Conclusion
n Delayed outcomes are the major practical impediment 

of any outcome-adaptive clinical design.
n A general methodology to address this problem is to 

treat unobserved outcomes as nonignorable missing 
data.

n Bayesian data augmentation can be conveniently used 
to handle the resulting missing data.

n Simulation studies show that the methodology 
outperforms the existing approaches.
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