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Artificial	Intelligence	(AI)	
•  Intelligence	=	Ability	of	Performing	Mental	Work	
•  AI	=	Software	with	the	Ability	of	Performing	Human	Mental	Work	
•  Robot	=	Machine	(hardware)	with	the	Ability	Perform	Physical	and/or	

Mental	Work	that	Usually	Requires	AI	
•  Examples	of	AI	Technologies	and	Robotics		

–  Calculator,	computer,	iphone,	ipad,		
–  ELIZA,	Apps,	search	engine,	Google	map,	ecommerce	system,..	Alpha0	
–  Machine-learning,	data	mining,	statistical	modeling.	
–  Humanoid	robots,	iRobot,	robots	in	assembly	lines,	self-drive	cars		

•  Medicine	AI	
–  Quantitative	Structure–Activity	Relationship	(QSAR)	and	Molecular	Design	in	

Drug	Discovery		
–  Cancer	Prediction	Using	Microarray	Data		
–  Disease	Diagnosis	and	Prognosis	Based	on	Medical	Image		
–  Natural	Language	Processing	for	Medical	Records		
–  Similarity-Based	AI	for	Clinical	Trials	
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Artificial	General	Intelligence	(AGI)	
•  AGI	Is	Machine	With	Full	Scope	Of	Human	Intelligence	

–  Unlike	Narrow	AI	that	accomplish	specific	tasks	for	human	
–  Capability	of	experiencing	consciousness,	emotion,	discovery,	creativity,	

self-awareness,	collaboration,	and	evolution	
–  Maybe	be	capable	of	creating	robots	like	himself	and	human	that	can	

give	births		
•  AGI	Is	Another	Race	Of	Human	Beings	

–  As	medical	AI	develops,	we	gradually	replace	our	malfunctioned	organs	
with	ones	(artificial	or	not),	making	everyone	a	mixture	of	human	and	
machine.	

–  As	robots	reach	full	human	intelligence	and	intensively	interact	with	us,	
we	will	develop	strong	feeling	with	them	and	will	not	discriminate	them	
just	because	of	their	originalities.	

•  Challenges	To	Overcome	
–  Computing	power	required	-	possibly	powered	by	Quantum	Computing	
–  Physical	(muscular)	power	required	
–  Man-machine	mixture	might	be	a	solution			

Copyright®		Mark	Chang,	PhD,	AGInception,	
Boston	University,	2019	 4	



Copyright®		Mark	Chang,	PhD,	AGInception,	
Boston	University,	2019	 5	

Unsupervised	
Learning	

Machine	
Learning	

Reinforcement	
Learning	

Evolutional	
Learning	

Swarm	
Intelligence	
Learning	

Supervised	
Learning	

Classification	

Regression	

Anomaly		
detection		

Clustering	

Association	

Dimension	
reduction	

Machine	Learning	=	Backbone	of	Narrow	AI	



Types	Of	Machine	Learning	
•  Supervised	Learning	

–  Learner	gives	a	response	y	based	on	input	x,	and	compare	the	target	y	
–  Trained	learner	will	be	able	to	predict	future	outcome	
–  Ex:	Digital	imaging	recognition	for	cancer	diagnosis		

•  Unsupervised	Learning	
–  Based	on	the	similarities	to	re-represent	the	inputs	in	a	more	efficient	way	
–  Find	hidden	structure	without	the	help	of	a	target	answer	
–  Ex:	Documentation	organization,	customer	segmentation,	patient	clustering	

•  Reinforcement	Learning	
–  Concerns	how	a	learner	should	take	actions	in	an	environment	so	as	to	

maximize	some	notion	of	long-term	reward		
–  Ex:	iRobot,	driverless	car	

•  Evolutionary	Intelligence/Learning	
–  Emerges	through	evolutions	over	generations	of	AI	agents	–	become	better	in	

some	sense	
–  Ex:	Genetic	algorithm	for	pharmacovigilance	and	Healthcare	management	

•  Swarm	Intelligence/Learning	
–  Systems	operation	based	on	micro	(individual)	motivations,	without	a	

centralized	controller	or	leader		
–  Ex:	Ant	algorithm	for	optimal	customer	boarding	strategy	at	airport	
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Deep	Learning	
•  Deep	Learning	Neural	Network	

– Multiple-layer	artificial	neural	network	
–  Progressively	extract	higher-level	features	from	raw	input		

•  Four	Major	Network	Architectures	
1.  Feed-forward	Neural	Network	(FNN)	for	General	

Classification	and	Regression		
2.  Convolution	Neural	Network	(CNN)	for	Image	and	Facial	

Recognition			
3.  Recurrent	Neural	Network	(RNN)	for	Speech	

Recognition,	Natural	Language	Processing		
4.  Deep	Belief	Network	(DBN)	for	Disease	Diagnosis	and	

Prognosis.		
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Artificial	Neural	Network	(ANN)	
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Activation	Function:	identity,	softmax,	logistic,	sigmoidal,	tanh,	and	sgn	functions,	… 	



Multiple	Perceptron	(Forward	Neural	Network)	
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•  With	a	identity	activation	function,	the	ANN	=	linear	function	Xi	and	linear	in	Wi	
•  Classic	linear	model	is	linear	in	parameter	Wi	but	can	nonlinear	in	Xi	
•  Learning	=	updating	weight	Wi		

9	

Wi	 Wi	



Learning	-	Backpropagation	Algorithm	
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Learning	(training)	=	updating	weight	wi	in	the	network.	
	
																																																													Error	or	loss	function:	

Update	weight	wi	backwards	layer	by	
layer	starting	from	the	output	layer,	
hidden	layers,	to	the	input	layer.	
α	=	learning	rate,	a	small	constant	to	
ensure	convergence	of	the	algorithm,	

Predicted	
Targeted	

Weight	increment	

Δwi = −α
∂E
∂wi

E = 1
N

(Ŷi −Yi )
2

i
∑

Ŷ = f (wi ,Yi )



Training	And	Testing	
•  Train	AI	Model	to	Determine	Its	Parameters	Before	Use	
•  Test	the	Trained	Model	for	Its	Performance	
•  Define	Target	Population	
•  Obtain	Training	and	Testing	datasets	

–  Resampling	with	replacement	(bootstrap)	and	without	
replacement	(split)	

–  For	larger	sample	size	problems,	use	resampling	without	
replacement	because	each	sample	likely	reflects	the	
distribution	of	the	target	population.	

–  For	small	sample	size	problems,	use	resampling	with	
replacement	because	each	sample	often	does	not	reflect	
the	population	and	sample	is	too	small	for	resampling	
without	replacement	(Empirical	distribution	≈	population	
distribution).	
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Training	Error	Versus	Testing	Error	
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Over-fitting	

Regularization:	
Introducing	a	loss	
function	to	reduce	
over-fitting.	



Convolution	Neural	Network	(CNN)	
•  Main	Ideas	In	CNNs	

–  Different	filters	in	the	convolution	layers	
–  Location	invariance	and	compositionality:	make	sense	for	image	
processing	but	not	for	NLP	or	time-series	events	

•  Filter	Functions	
–  Each	identifies	particular	features	or	image	elements	
–  Overlapped	local	features	to	formulate	the	“overall	picture.”		

•  CNN	for	Data	Other	Than	Images,	If	
–  (1)	the	data	can	be	transformed	to	look	like	image	data	in	
matrix	form,	and	

–  (2)	the	data	is	just	as	useful	after	swapping	any	two	columns	
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Convolution	Illustrated	
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A	convolution	(function)	of	two	function	f(x)	and	g(y)	is	defined	as	the	
sum	of	the	products	of	one	image	f	(·)	at	location	x	and	another	image,		
g	(·)	(called	the	filter)	at	a	different	location	y-x.	At	pix	level:	

14	

Filter	size	N=9	

A	high	value	indicates	good	match	
between	filter	and	original	images	

High	values	on	diagonal	elements	
indicate	the	backslash	image	



CNN	For	Disease	Diagnosis	

Copyright®		Mark	Chang,	PhD,	AGInception,	
Boston	University,	2019	 15	

•  Pooling	Layer	=>	Reduce	Resolution	or	Size	of	Images	
•  Convolutional	Layer	=>	Filtering	Specific	Features	
•  Dense	Layer	=>	Fully	Connected	Layer	
	



Sample	Of	Mnist	Handwritten	Digits		
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CNN	For	Written	Digits	Recognition	98.7%	
Accuracy	Using	keras	In	R		
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Applications	Of	CNN	
•  Hussain	(2017),	Cascaded	deep	CNN	for	a	brain	tumor	segmentation.		
•  Farooq	(2017),	CNN-based	method	for	the	classification	of	Alzheimer’s	

disease	in	MRI	images		
•  Moeskops	et.	al	(2016),	a	multiscale	CNN-based	approach	for	automatic	

segmentation	of	MR	Images	for	classifying	voxel	into	brain	tissue	classes		
•  Prasoon	et.	al	(2013),	a	tri-planar	CNN	used	for	segmentation	of	tibial	

cartilage	in	knee	MRI	images		
•  Zhang	et	al	(2015),	segmentation	of	isointense	brain	tissue	presented	

through	a	CNN	using	a	multimodal	MRI	dataset	by	training	the	network	on	
three	patches	that	are	extracted	from	the	images	

•  Anthimopoulos	et	al	(2016),		lung	pattern	classification	for	interstitial	lung	
diseases	using	a	deep	convolutional	neural	network	

•  Cole	et	al	(2016),	Predicting	brain	age	with	deep	learning	from	raw	
imaging	data	results	in	a	reliable	and	heritable	biomarker		

•  Esteva	et	al	(2017),	Dermatologist-level	classification	of	skin	cancer	with	
deep	neural	networks		
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Architecture	Of	Recurrent	Neural	
Network	(RNN)	

•  Recurrent	Neural	Network	(RNN)	
–  	ANN	for	modeling	temporal	dynamic	behavior	
–  Unlike	FNN,	RNNs	can	use	their	internal	state	as	memory	to	
process	sequences	of	inputs.		

•  Basic	RNN	
–  Suffers	from	a	short-term	memory	problem	
–  Difficult	to	carry	information	from	earlier	time	steps	to	later	
ones	when	the	sequence	is	long	as	such	English	text		

•  Long	Short-Term	Memory	Networks	(LSTMs)	
–  Designed	to	deal	with	long-term	dependency	problems	
–  Used	for	LNP,	stock	market	prediction,	voice	recognition,	
motion	picture	captioning,	and	poem	and	music	generation.		
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Vanishing	And	Exploding	Gradient	Problem	&	Solutions	
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X0	 X1	 Xt-1	 Xt+k	 Xn	

w	

Problem	:		
When	the	number	of	layers	gets	
very	large,	the	gradients	at	early	
layers	vanish	and	changes	of	the	
corresponding	weights	have	
minimal	effect	on	the	outcome	

…	 …	 …	w	w	w	

Xt	
…	

Skip	Connection	

Solutions:	
•  Introduce	Skip	Connections	(e.g.,	if…	then…)	
•  Leaky	Recurrent	Units		
•  Gate	Recurrent	Network	
•  Long	Short-Term	Memory	Network	(LSTM)	
•  Deep	Belief	Network	

w	



Architecture	Of	Long	Short-Term	Memory	Network	
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Application	Of	RNN	To	Molecular	Design	

Gupta,	et	al.	(2018)	trained	their	RNN	on	541,555	SMILES	strings,	with	lengths	from	34	
to	74	SMILES	characters	(tokens).	The	RNN	model	can	be	used	to	generate	sequences	
one	token	at	a	time,	as	these	models	can	output	a	probability	distribution	over	all	
possible	tokens	at	each	time	step.	Typically,	the	RNN	aims	to	predict	the	next	token	of	
a	given	input.	Sampling	from	this	distribution	would	then	allow	generating	novel	
molecular	structures.		
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Simplified	Molecular-Input	Line-Entry	System	
(SMILES)		

SMILES	describe	the	structure	of	chemical	species	using	short	ASCII	strings.	
In	2007,	an	open	standard	called	OpenSMILES	was	developed	in	the	open-
source	chemistry	community	
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Applications	Of	LSTM	In	NLP	

•  Sentiment	Analysis:	identify	text	as	“positive”	or	“negative,”	filtering	spam	
or	classifying	email	text	as	spam,	classifying	the	language	of	the	source	
text	

•  Language	Modeling:	predicting	the	probabilistic	relationships	between	
words,	enabling	one	to	predict	the	next	words	or	phrases	

•  Speech	Recognition:	translate	speech	to	text	readable	by	humans	
•  Machine	Translation:	translate	text	between	languages	
•  Document	Summarization:	a	heading,	abstract	for	a	document	
•  Question	Answering	System:	Process	Questions	and	Provide	Answers	in	a	

natural	language	
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A	trained	LSTM	is	to	provide	the	probability	of	string	S	via	a	
conditional	probability:	



Natural	Language	Processing		(NLP)	Versus	
Molecular	Design	

•  Features	In	NLP		
–  Words	at	difference	locations	or	sequence	of	words	in	a	sentence	

•  Word	Embedding	
–  Semantic	modeling	requires	mapping	words	to	numbers	or	word	embedding.		
–  Word	embedding	involves	a	mathematical	embedding	from	a	space	with	many	

dimensions	per	word	to	a	continuous	vector	space	with	a	lower	dimension.	
•  Features	In	Molecular	Design	

–  Molecular	models	exhibit	tree-structures,	which	can	be	transferred	into	one-
dimensional	sequences	of	different	substructures	

•  Word	Embedding	In	Biological	sequences		
–  Word	Embedding	for	n-gram	for	biological	sequences	(e.g.	DNA,	RNA,	and	

Proteins)	-	Asgari	and	Mofrad	(2015).		
–  The	representation	can	be	used	in	deep	learning	in	proteomics	and	genomics.		

•  Long	Short-Term	Memory	Nets	
–  NLP	deals	with	sequences	of	words.	Drug	discovery	deals	with	gene	sequences	

or	molecular	structures	represented	by	a	sequence	of	biological	substructures	
–  LSTMs	can	be	used	for	compound	screening	and	molecular	design	as	in	NLP.		
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Deep	Belief	Network	(DBN)	
•  Two	Major	Challenges	In	QSAR	Studies	and	Drug	Design		

–  (1)	the	large	number	of	descriptors	may	have	autocorrelations	
–  (2)	proper	parameter	initialization	in	model	prediction	to	avoid	
an	over-fitting	problem.		

•  DBN	Combines	Unsupervised	and	Supervised	Learning	
–  For	efficient	learning		
–  Each	DBN	layer	is	trained	independently	via	unsupervised	
portion	

–  The	unsupervised	learning	is	used	for	dimension	reduction	or	
selecting	subsets	of	descriptors.		

–  After	the	completion	of	unsupervised	learning,	the	output	from	
the	layers	is	refined	with	supervised	logistic	regression.		

Copyright®		Mark	Chang,	PhD,	AGInception,	
Boston	University,	2019	 26	



Architecture	Of	Deep	Belief	Net	With	Straggled			
Restricted	Boltzmann	Machine	(RBM)	
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•  RBMs	are	two-layer	neural	nets	
that	constitute	the	building	
blocks	of	deep-belief	networks.		

•  The	first	layer	of	RBM	is	called	
the	visible,	or	input	layer,	and	
the	second	is	the	hidden	layer.	

•  Activation	function	σ	=	
normalized	exponential	energy	
function.	

•  Two-Stage	Learning:	
Unsupervised	learning	for	
feature	selection	=	training	RBM	
in	parallel,	followed	by	
supervised	learning	using	
backpropagation	

27	

σ	

σ	σ	

σ	σ	σ	
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Single-Step	Contrastive	Divergence	(CD-1)	
Procedure	For	RBM	And	DBN	

•  Take	a	training	set	v	and	initial	w,	compute	the	probabilities	of	the	hidden	units		
•  Sample	a	hidden	activation	vector	h	from	this	probability	distribution.	
•  Compute	positive	gradient	=	outer	product	of	v	and	h	
•  From	h,	sample	a	reconstruction	v'	of	the	visible	units,	then	resample	the	hidden	

activations	h'	from	this	(Gibbs	sampling	step).	
•  Compute	negative	gradient	=	outer	product	of	v'	and	h’		
•  Update	to	weight	W	with	increment	=	Learning	_rate	*	(positive	gradient	-	

negative	gradient):	
	
	
•  Update	the	biases	a	and	b:	
	
		
•  The	above	procedure	starts	from	the	input	layer	or	the	first	RBM	later	and	move	

gradually	to	the	output	layer.	
•  When	the	unsupervised	training	is	finished	for	all	RBM,	the	supervised	learning	

(classification)	starts	to	fine	tuning	the	weights.			
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Application	Of	Deep	Belief	Network	
•  Hinton	et	al	(2006)	proposed	a	fast	learning	algorithm	used	for	

deep	belief	networks.		
•  Zhen	et	al	(2016)	proposed	a	convolutional	deep	belief	network	is	

for	direct	estimation	of	a	ventricular	volume	from	images	without	
performing	segmentation	at	all	

•  Jaekwon,	et	al	(2017)	compared	DBNs	with	other	methods	in	
cardiovascular	risk	prediction.	They	proposed	a	cardiovascular	
disease	prediction	model	using	the	sixth	Korea	National	Health	and	
Nutrition	Examination	Survey	(KNHANES-VI)	2013	dataset	to	
analyze	cardiovascular-related	health	data.	They	show	that	
statistical	DBN-based	prediction	model	has	an	83.9%	accuracy.		

•  Ghasemi	et	al	(2018)	used	a	deep	belief	network	to	evaluate	the	
DBN’s	performance	using	Kaggle	datasets	with	fifteen	targets	
containing	more	than	70k	molecules.	The	results	revealed	that	an	
optimization	in	parameter	initialization	will	improve	the	ability	of	
deep	neural	networks	to	provide	high	quality	model	predictions.		
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Software	Packages	For	Deep	Learning		

(TensorFlow,	Keras,	keras	and	kerasR)		
	•  TensorFlow	

–  Multiple	levels	of	abstraction	powered	by	Microsoft	
–  An	open	source	artificial	intelligence	library,	using	data	flow	graphs	to	build	

models.		
–  For	creating	large-scale	neural	networks	with	many	layers	
–  Scale	->	Vector	->	Matrix	->	Tensor.		
–  TensorFlow	=	Multidimensional	Data	Flow	from	Layer	to	Layer	in	Artificial	

Neural	Networks	
•  Keras		

–  High-level	neural	networks	API	written	in	Python	
–  Capable	of	running	on	top	of	TensorFlow,	CNTK,	or	Theano	
–  Developed	with	a	focus	on	enabling	fast	experimentation	

•  The	R	packages,	keras	and	kerasR		
–  Two	R	version	of	Keras	for	the	statistical	community	
–  keras	package	uses	the	pipe	operator	(%>%)	to	connect	functions	or	

operations	together,	but	you	won’t	find	this	in	kerasR	
–  kerasR	uses	the	$	operator	to	make	your	model	
–  kerasR	contains	functions	that	are	named	in	a	similar,	but	not	identical	way	as	

the	original	Keras	package.		
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Machine	Learning	Packages	In	R	

Copyright®		Mark	Chang,	PhD,	AGInception,	
Boston	University,	2019	 31	



Public	Data	Sources	For	AI	
•  The	commonly	used	public	data	repositories	for	AI	

applications	in	cancer	prediction	and	clustering	include	the	
TCGA,	UCI,	NCBI	Gene	Expression	Omnibus	(GEO)	and	
Kentridge	biomedical	databases.		

•  Kaggle		
–  Inside	Kaggle	you’ll	find	all	the	code	&	data	you	need	to	do	your	
data	science	work.	Use	over	19,000	public	datasets	and	200,000	
public	notebooks	are	ready	to	conquer	any	analysis	in	no	time.		

–  www.kaggle.com		
•  UCI	Center	for	Machine	Learning	and	Intelligent	Systems		

–  http://archive.ics.uci.edu/ml/datasets.php		
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Two	Special	Artificial	Neural	Networks:	

– Generative	Adversarial	Networks	(GANs)		
– Autoencoder	(Autoassociative	Network)		
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Generative	Adversarial	Networks	(GANs)		
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1.  Generator	takes	in	random	numbers	and	returns	an	image.		
2.  The	generated	image	is	fed	into	the	discriminator	along	with	a	stream	of	images	taken	from	

the	actual	dataset.		
3.  Discriminator	takes	in	both	real	and	fake	images	and	returns	probabilities	of	authenticity.		

GAN	can	be	viewed	as	the	combination	
of	a	counterfeiter	and	a	cop,	where	the	
counterfeiter	is	learning	to	pass	false	
notes,	and	the	cop	is	learning	to	detect	
them.	Both	are	dynamic	in	the	zero-
sum	game,	each	side	comes	to	learn	
the	other’s	methods	in	a	constant	
escalation.	As	the	discriminator	
changes	its	behavior,	so	does	the	
generator,	and	vice	versa.		



Applications	Of	Generative	Adversarial	
Networks	(GAN)		

•  Imaging	markers	can	be	used	for	monitoring	disease	progression	with	or	without	treatment.	
Models	are	typically	based	on	large	amounts	of	data	with	annotated	examples	of	known	markers	
aiming	at	automating	detection.	Christian	Doppler	et	al	(2017)	developed	a	GAN	that	can	learn	a	
manifold	of	normal	anatomical	variability.	Applied	to	new	data	such	as	images	containing	retinal	
fluid	or	hyperreflective	foci,	the	model	labels	anomalies	and	scores	image	patches	indicating	their	
fit	into	the	learned	distribution.		

•  Deep	generative	adversarial	networks	are	the	emerging	technology	in	drug	discovery	and	
biomarker	development.	Kadurin	et	al.	(2017)	demonstrated	a	proof-of-concept	in	implementing	a	
deep	GAN	to	identify	new	molecular	fingerprints	with	predefined	anticancer	properties.	They	also	
developed	a	new	GAN	model	for	molecular	feature	extraction	problems,	and	showed	that	the	
model	significantly	enhances	the	capacity	and	efficiency	of	development	of	the	new	molecules	with	
specific	anticancer	properties	using	the	deep	generative	models.		

•  Yahi,	et	al.	(2017)	propose	a	framework	for	exploring	the	value	of	GANs	in	the	context	of	
continuous	laboratory	time	series	data.	The	authors	devise	an	unsupervised	evaluation	method	
that	measures	the	predictive	power	of	syn-	thetic	laboratory	test	time	series	and	show	that	when	it	
comes	to	predicting	the	impact	of	drug	exposure	on	laboratory	test	data,	incorporating	represen-	
tation	learning	of	the	training	cohorts	prior	to	training	the	GAN	models	is	beneficial.		

•  Putin,	et	al.	(2018)	proposed	a	Reinforced	Adversarial	Neural	Computer	(RANC)	for	the	de	novo	
design	of	novel	small-molecule	organic	structures	based	on	the	GAN	paradigm	and	reinforcement	
learning.	The	study	shows	RANCs	can	be	reasonably	regarded	as	a	promising	starting	point	to	
develop	novel	molecules	with	activity	against	different	biological	targets	or	pathways.	This	
approach	allows	scientists	to	save	time	and	covers	a	broad	chemical	space	populated	with	novel	
and	diverse	compounds.		
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1.  Autoassociative:	Output	=	input	
2.  Dimension	Reduction:	Hidden	layer	smaller	than	input	layer	
3.  Mixture	of	unsupervised	and	supervised	learning	

Autoencoder	(Autoassociative	Network)			



Applications	of	Autoencoder	
•  Kadurin,	et	al.	(2017)	presented	an	application	of	autoencoders	for	

generating	novel	molecular	fingerprints	with	a	defined	set	of	parameters.		
–  7-layer	architecture	with	the	latent	middle	layer	serving	as	a	discriminator	
–  Input	and	output	use	a	vector	of	binary	fingerprints	and	concentration	of	the	

molecule.		
–  NCI-60	cell	line	assay	data	for	6252	compounds	
–  Screened	72	million	compounds	in	PubChem	and	select	candidate	molecules	

with	potential	anti-cancer	properties.		
•  Cancer	prediction	using	AI	includes	predicting	the	existence	of	cancer,	

cancer	type	and	survivability	risk.	Different	types	of	autoencoders	have	
been	used	for	filtering	microarray	gene	expressions:	
–  Stacked	denoising	autoencoders	(Jie,	et	al.,	2015),		
–  Contractive	autoencoders	(Macıas-Garcıa,	et	al.,	2017)		
–  Sparse	autoencoders	(Rasool,	2013),		
–  Regularized	autoencoders	(Kumardeep,	et	al.,	2017)	
–  Variational	autoencoders	(Way	and	Greene,	2017)		
–  Deep	architecture	of	four	layers	with	15,000,	10,000,	2000,	and	500	neurons	

(Danaee	et	al,	2016)	
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Decision	Tree	
•  A	Tree	Method	(TM)		

–  A	commonly	used	supervised	learning	method		
–  Classification	&	Regression	Tree	
–  Features	are	dichotomized	for	a	binary	tree	

•  Impurity	Measures	For	Optimization	
–  Gini	index	(CART)	
–  Entropy	(ID3,	C4.5)		
–  Misclassification	error	

•  Overfitting	and	Error	Propagation	
–  For	larger	trees,	an	early	misclassification	error	can	propagate	downstream,	

eventually	leading	to	poor	predictions.		
Solutions:	
–  Tree	pruning	
–  Bagging	&	Boosting	
–  Random	Forest	

•  Applications	in	Medicine	
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Example	Of	Binary	Decision	Tree	
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The	Decision	Tree	Method	For	Categorical	Outcome	
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Common	Impurity	Measures	
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Misclassification	Error	

Gini	Index	

Gross-Entropy	or	Deviance	

For	Node	m	of	A	Classification	Tree	(	predicted	probability	pmk):	



Threshold	Determination	And	Tree	Pruning		

•  Determining	An	Optimal	Tree	Model	
–  Two	competing	factors:	the	accuracy	of	the	tree	method	and	

computational	efficacy.		
–  For	a	given	tree	depth,	optimal	threshold	for	each	parameter	is	

obtained	using	the	greedy	method:	try	a	range	of	different	thresholds		
–  Any	of	the	three	impurities	can	be	used,	but	often	misclassification	

rate.		
–  Tree	size	is	a	tuning	parameter	governing	the	model’s	complexity		

•  Cost-Complexity	Pruning	
–  Split	tree	nodes	only	when	the	decrease	in	error	due	to	the	split	

exceeds	some	threshold.	This	strategy	is	too	short-sighted	since	a	
seemingly	worthless	split	might	lead	to	a	very	good	split	below	it.		

–  The	preferred	strategy	is	to	grow	a	large	tree,	stopping	the	splitting	
process	only	when	some	minimum	node	size	or	tree	depth	is	reached.	
Then	this	large	tree	is	pruned	using	cost-complexity	pruning	
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Bagging,	Boosting,	And	Random	Forest	
•  A	single	big	tree	can	propagate	classification	errors	to	the	leaves,	

making	the	prediction	very	unstable.		
–  Solutions:	Bagging,	Boosting,	and	Random	Forest	

•  Bagging	(Bootstrap	Aggregation)	
–  Forming	an	average	of	many	different	trees.		

•  Boosting	
–  Output	the	class:		

–  Weak	classifiers	Gi(x)	are	only	slightly	better	than	random	guessing.		
–  αi	computed	by	the	boosting	algorithm	(AdaBoost	Algorithm)	to	

weight	more	on	better	classifies	Gi(x).		
•  Random	Forests	

–  an	ensemble	classifier	that	consists	of	many	decision	trees	with	
randomly	selected	features	

–  the	final	class	is	the	mode	of	the	class’s	output	by	individual	trees.		
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Applications	Of	Decision	Tree	Methods	

•  Singh,	et	al	(2015)	have	used	RFs	for	bioactivity	classification		
•  Wang	et	al.	(2015)	have	used	the	RF	method	to	model	the	protein-

ligand	binding	affinity	between	170	complexes	of	HIV-1	proteases,	
110	complexes	of	trypsin,	and	126	complexes	of	carbonic	
anhydrase.		

•  Kumari	et	al	(2015)	have	constructed	an	improved	RF	by	integrating	
bootstrap	and	rotation	feature	matrix	components	for	drug	targets	
identification.		

•  Mistry,	et	al.	(2016)	have	used	RF	and	DTs	to	model	the	drug-
vehicle	toxicity	relationship.	Their	data	set	included	227,093	
potential	drug	candidates	and	39	potential	vehicles.	The	resulting	
model	predicted	the	toxicity	relief	of	drugs	by	specific	vehicles.		
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Similarity-Based	and	Similarity-
Principle-Based	Machine	Learning	
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New	Scientific	Paradigm	

•  Controversies	in	Statistical	Evidence	and	
Scientific	Discovery	

•  Call	for	New	Paradigms	–	AI/Machine	Learning	
•  The	Similarity	Principle	(SP)	

– Human	intelligence	in	daily	life	
– Role	of	SP	in	scientific	discovery	
– Similarity-Based	Machine	Learning	(SBML)	
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Simpson’s	Paradox	
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All	patients:			B	better	than	A		
Males:													A	better	than	B	
Females:									A	better	than	B		
Question:						Should	a	patient	take	A	or	B?		
	
	
All	Females:									A	better	than	B	
Young	Females:		B	is	better	than	A	
Old	Females:							B	is	better	than	A	
Question:								Should	a	patient	take	A	or	B?		

•  How	to	interpret	the	results	if	these	patients	+	you	=	the	entire	patient	population	
(One	response	from	you	would	not	change	the	direction	of	the	drug	effect)?	

•  Controversial	Question:	How	Specific	Is	Too	Specific?	
•  It	is	philosophical	question	or	statistical	question:	Don’t	put	cart	before	the	horse		
•  Fundamental	Solution:	The	Similarity	Principle	



Controversies	In	Prediction	Of	Drug	Effect	

•  Longevity	Prediction	–	Paradox	of	Traveling	
–  Does	the	prediction	of	person’s	longevity	changes	as	soon	
as	he	arrived	at	the	new	country	because	of	its	different	
life-expectance?	

•  Bias	In	Predictive	Effect	
–  Stratified	randomized	and	un-randomness	in	clinic	site	
selection	lead	to	a	different	patient	distribution	(e.g.	race	
distribution)	in	the	clinical	trial	from	the	target	population	

–  If	race	has	effect,	the	mean	drug	effect	will	be	usually	
biased.	

•  Drug	Effect	Estimation	for	Multiregional	Trial	
–  How	small	should	regions	to	be,	country,	state,	city?	
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Similarity	Principle	
•  All	science,	and	learning	itself,	is	based	on	a	fundamental	

principle	–	the	similarity	principle	(Chang,	2012,	2014).		
•  The	Similarity	Principle:		

–  Similar	things	or	individuals	will	likely	behave	similarly,	and	the	
more	similar	they	are	the	more	similarly	they	behave.		

–  Ex.,	people	with	the	same	(or	a	similar)	disease,	gender,	and	age	
will	likely	have	similar	responses	to	a	medical	intervention.	If	
they	are	similar	in	more	aspects	they	will	have	more	similar	
responses.		

–  Predicted	outcome	=		similarity-weighted	the	observed	
outcomes:	

–  Now	do	you	know	how	to	resolve	the	Simpson’s	Paradox?	
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Similarity	Principle	Illustrated	
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Similar	things	behave	
similarly.	

Illustrations	Similarity	Principle		

Things	more	similar	
behave	more	similarly.	

Features	selection	and	
grouping.	

Roles	of	outcome	and	
features	in	similarity	

1.  QSAR:	Compounds	with	similar	structures	will	have	
similar	activities.		

2.  Terrorist	attach:	Sept	11	Every	year	is	a	high	risky.	

1.  Use	results	of	drug	test	in	animals	to	inform	a	small	first-
in-man	clinical	trial,	and	

2.  Use	results	from	clinical	trials	to	decide	whether	the	
drug	can	be	used	for	large	patient	population	

1.  Define	the	target	population	and	used	for	model	
evaluation	

2.  Applied	to	scientific	discovery	and	causal	relationships	

1.  Similarity	relies	on	by	both	the	features	and	outcome	
variable.	

2.  The	relative	importance	of	different	features	can	be	
objectively	determined	using	feature-scaling	factors	



Two	Approaches	To	Learning	From	Data	

•  Causality	Approach	
–  Seeking	the	relationship	between	the	outcome	and	the	independent	

variables	(attributes)	
–  Y(x)=	f(x;	a(x’)),	parameters	=	function	of	observed	data	

•  Similarity	Approach	
–  Seeking	the	relationship	between	the	outcomes	between	different	

subjects	with	different	attributes	
–  Y(x)	~	S(x,x’)Y(x’),	similarity	=	function	of	observed	data	

•  Similarity	Principle	(SP)	versus	Causality	
–  SP	is	the	foundation	of	any	causal	relationships	
–  Unavoidable	similarity	grouping	for	repetitions	of	events	and	causality		

•  AI	Learning	and	Scientific	Discovery	
–  Show	human	brains	incredible	ability	
–  Imply	human	incredible	inability	to	handle	everything	individually	
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Subjectivity	Of	Causality	&		
Controversies	In	Interpretations	Of	Cause	Effects	

•  Subjectivity	in	Potential	Cause	Selection	
•  Causes	Are	Generally	Not	Independent	
•  	Models	Are	Not	Unique	

–  Body	Weight	=	f(waist,	height)	
–  Body	Weight	=	f(waist,	height,	shoulder	height)	
–  Body	Weight	=	f(waist,	height,	shoulder	height,	foot	length)	
–  In	fact,	all	factors	are	correlated	and	statistically	significant	

•  Different	Models	Provide	Different	Interpretations	of	Effect	(association	or	
causality)	of	Waist	and	Height		

•  Similar	Controversies	In	Drug	Effect	=	f(drug,	race,	gene	x,	gene	y)	
–  Simply	stating	drug	effect	without	specifying	other	factors	is	misleading.	
–  Interpretation	of	a	factor	effect	must	in	the	context	of	all	other	factors	in	the	

model		
–  Given	a	larger	but	finite	population,	many	factors	(and	infinite	possible	

combinations	of	these	factors)	can	be	significant.	The	factors	included	in	the	
model	is	subjective	and	consequently	the	interpretation	drug	effect	is	
arbitrary			
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Dose	Analysis	of	Covariance	Make	Sense?	
•  Model	Options:	

–  Model	1:	Weight	=	a1*height	
–  Model	2:	Weight	=	a2*height	+	b2*(shoulder	Height)	
–  Model	3:	Weight	=	a3*height	+	b3*(shoulder	Height)+c3*(leg	length)	
–  Model	4:	Weight	=	d4*(head	height)	+	b4*(shoulder	height)	

•  Given	big	data	
–  All	models	are	significant	

•  How	to	interpret	the	parameters?	
–  What	is	the	effect	of	height,	a1,	a2,	or	a3?	
–  What	is	the	effect	of	shoulder	height,	b1,	b2	or	b4?	
–  a1,	a2,	and	a3	can	be	very	different	since	height	mainly	consists	of	shoulder-

height,	and	leg	is	a	part	of	shoulder-height	and	height	
–  c3	can	be	negative	since	a3	and	b3	have	already	include	the	leg	effect,	would	

you	say:	“longer	leg	will	reduce	the	weight?”	
•  Conclusion:			

–  Many	attributes	or	covariates	(including	genes)	in	modeling	exhibit	strong	
correlations,	the	common	interpretation	of	parameters	often	do	not	make	
much	sense	to	me.	
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Similarity	Principle	In	Action	-	Similarix	
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Bounded	Similarity:	0	≤	Sij	≤	1	
Completely	different	=	0	
Identical	=	1	



Feature-Scaling	Factors	(FSF)	
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•  Rk	depend	on	Selected	Features	and	Outcome	
•  Including	More	Common	Features	will	

•  reduce	the	difference	and	increase	the	similarity	among	subjects	
•  lead	to	larger	Rk	differences	to	balance	out	the	effect	of	common	features	

•  Why	Exponential	Similarity	Function		
•  Human	only	can	pay	attention	to	limited	“local	events”	and	distant	events	

quickly	disappear	at	the	horizon			
•  Human	organ	sensibility	is	on	log-scale	(e.g.,	loudness,	brightness)	

Exponential	Similarity	Function:	

Distance	Function:	



SBML	-	Algorithm	
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Solve	initial	scaling	factors	Rk	based	on	Sij	
and	similarity	function	

Calculate	weight	Wij	using	Sij	and	Rk	

Normalize	training	dataset	

Assign	initial	similarity	scores,	Sij		

Normalized	new	data	(without	the	
outcome	variable)		using	mean	and	

standard	deviation	from	the	training	set	

Model	outcome,	Yi	=	sum	wijOj		

Calculate	error	E	=	sum	(Yi-Oi)2/N	

Update	scaling	Factors	Rk	using	gradient	
method	with	learning	rate,	alpha	

Calculate	similarity	score	Sij	between	
new	subjects	and	subjects	in	the	training	
set	using	the	previously	determined	Rk	

Calculate	weight	Wij	using	Rk	

Predict	future	outcome,	Yi	=	sum	wijOj	



•  Loss	Functions	
–  Lasso:		

–  Ridge:		
		

–  Elastic	Net:	
	
•  Minimization	with	Gradient	Method	

•  Learning	with	rate	α	

Learning	With	Regularization	
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Clinical	Trial	Example:	Rare	Disease	
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Training	Set	
Size	

Full	Linear	
Model	

Optimal	
Linear	Model	

Ridge	
Regression	

SBML	

25%	 0.774	 0.788	 0.796	 0.616	

50%	 0.803	 0.802	 0.804	 0.655	

75%	 0.806	 0.809	 0.810	 0.668	

Note:	MSE	normalized	by	variance	of	the	outcomes	

Mean	Squared	Error	(MSE)	of	Difference	Machine	Learning	Methods	
Based	on	Bootstraps	



Training,	Validation	&	Evaluation	Of	AI	Methods	

•  Cross-Validation	for	Tuning	Parameters	
–  Exhaustive	cross-validation	methods:	all	possible	ways	of	
training-validation	splits.		

–  Leave-p-out	cross-validation	(LpO	CV):	exhaustively	splits	with	p	
observations	as	the	validation	set,	the	rest	for	training.		

–  Bootstrapping:	the	random	selection	of	size	p	as	training	set	and	
size	q	as	test	set,	with	replacement	

•  Target	Population		(TP)	
–  Well-defined	TP	(WDTP)	is	needed	for	model	evaluation,	but	in	
AI	world,	WDTP	is	often	missing.	

–  Big	data:	simply	split	the	sample	into	trainset	and	testset	
–  Larger	data:	trainsets	and	testsets	obtained	from	resampling	
without	replacement	

–  Small	data:	use	empirical	distribution	–	trainsets	and	testsets	
obtained	from	bootstrapping		
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SBML	Performance	Of	Regression	Problem	
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Training	Sample	Size	

Outcome	Y	=	X1	+	X2X3	+	X4X4	+	X5.	
However,	X1,…,X7	from	standard	
multivariate	normal	distribution	are	
included	in	all	models	(X6,	X7	are	noise).	



Precision	Versus	Complexity	Of	Data	Relationship,	
Sample	Size,	And	Computational	Efficiency	

-						Variables	X6	and	X7	are	noise	
-  Training	Time	=	O(N2)	=	0.09	N2	

(second).	Training	Time	=	2.4	
minutes	for				trainset	size	N	=	400.	

-  MSE	normalized	by	the	naïve	MSE	
from	the	prediction	using	the	
training	sample	mean	

-  Learning	rate	α	=	0.125,		λ =	-0.5	
Epoch	=5	
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SBML	Performance	For	Classification	
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•  Y=	sign(X1+X2X3+X4X4+X5)+1)/2	
•  Xi	=	multivariate	normal	
•  Loss	function	λ	=	-0.5		
•  Learning	Rate	α	=	0.125	
•  MSE	is	based	on	probability	of	Y=1.	

Logistic	Model	

SBML	

M
SE
	

M
SE
	

M
SE
	



Paradigms	Of	Drug	Development	

•  Challenges	
– Multi-Regional	Trial	and	Subgroup	Analysis	
– Rare	Disease	and	Precision	Medicine	

•  Solutions	
– Smaller	Clinical	Trials	
– Stagewise	Marketing-Authorization	
– Enhanced	Pharmacovigilance	&	Postmarketing	
Monitoring	
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Kernel	Method	
•  Kernel	Method:		

–  Kernel	As	smooth	function	with	normalization	factor	(Hastie	et	al,	2001)	
–  Non-linear	kernel	regression	without	normalization	factor	(Hastie	et	al,	2001)	
–  Kernel	as	attributes	in	learning	(training	weights)	(Scholkopf,	etc.,	2005)	

	
	
	
•  Kernel	

–  Kernel,	k(�,�),		is	the	dot	product	of	feature	vectors	
–  Kernel	is	a	similarity	score	function	

•  Feature	Selection	for	Different	Objects		
–  Sequencing	(text,	sound,	music)	
–  Images	(black-white,	color)	
–  Trees	(chemical	compounds)	
–  Networks	(metabolic	net,	disease-symptom	net,	drug-AE	net)	
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The	Kernel	Trick	
•  Any	algorithm	for	vectorial	data	that	can	be	expressed	
only	in	terms	of	dot	products	between	vectors	can	be	
performed	implicitly	in	the	feature	space	associated	
with	any	kernel,	by	replacing	each	dot	product	by	a	
kernel	evaluation	(Scholkopf,	etc.,	2005).	

•  Transfer	linear	methods	(e.g.,	PCA)	into	nonlinear	
methods	by	simply	replacing	the	classic	dot	product	
with	a	more	general	kernel,	such	as	the	Gaussian	RBF	
kernel.		

•  Nonlinearity	via	the	new	kernel	is	then	obtained	at	
minimal	extra	computational	cost,	as	the	algorithm	
remains	exactly	the	same.		
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Support	Vector	Machine	As	A	Kernel	Method	
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Classifier	with	Hard	Margin	Model:	

Classifier	with	Soft	Margin	Model:	



	
Support	Vector	Machine	In	R	

For	Predicting	Cognitive	Impairment		
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•  Alzheimer’s	disease	is	the	
most	common	cause	of	
dementia	in	the	elderly.		

•  Predict	the	cognitive	
outcome	using	the	
demographics	and	130	
biomarkers	(predictors).	



Application	Of	Kernel	Methods		
<<Kernel	Methods	in	Computational	Biology>>,	Scholkopf	et	al	(2004)	collect	different	
applications	of	kernel	methods	and	support	vector	machines:		
	
•  Inexact	Matching	String	Kernels	for	Protein	Classification	
•  Fast	Kernels	for	String	and	Tree	Matching	
•  Local	Alignment	Kernels	for	Biological	Sequences	
•  Kernels	for	Graphs	
•  Diffusion	Kernels	
•  A	Kernel	for	Protein	Secondary	Structure	Prediction	
•  Heterogeneous	Data	Comparison	and	Gene	Selection	with	Kernel	Canonical	

Correlation	Analysis		
•  Kernel-Based	Integration	of	Genomic	Data	Using	Semi-definite	Programming		
•  Protein	Classification	via	Kernel	Matrix	Completion	
•  Accurate	Splice	Site	Detection	for	Caenorhabditis	elegans	
•  Gene	Expression	Analysis:	Joint	Feature	Selection	and	Classifier	Design	
•  Gene	Selection	for	Microarray	Data	
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Application	Of	SVM	
•  SVM-based	protein	fold	recognition	methods	(Shamim	
et	al.,	2007,	2013;	Damoulas	and	Girolami,	2008;	Dong	
et	al.,	2009;	Yang	and	Chen,	2011).	The	main	difference	
among	these	SVM-based	methods	is	their	feature	
representation	algorithms.		

•  Poorinmohammad	et	al.	(2015)	combined	the	SVM	
approach	with	pseudo	amino	acid	composition	
descriptors	to	classify	anti-HIV	peptides,	with	a	
prediction	accuracy	of	96.76%.		

•  Wei	and	Zou	(2016)	provided	a	review	of	the	recent	
progress	in	machine	learning-based	methods	for	
protein	fold	recognition	prior	to	2011.		

	
	 Copyright®		Mark	Chang,	PhD,	AGInception,	

Boston	University,	2019	 69	



Unsupervised	Learning		
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Unsupervised	Learning	(USL)	
•  Unsupervised	Learning	Has	No	Clear,	Correct	Answers		
•  USL	=	Clustering,	Association,	and	Anomaly	Detection		

–  Clustering	=	discovering	the	inherent	groupings	in	the	data.	Ex:	
grouping	patients	by	their	baseline	disease	severity	and	demographic	
characteristics	

–  An	association	rule	learning	=	discovering	rules	that	describe	large	
portions	of	the	data.	Ex:	people	buying	product	A	also	tending	to	buy	
product	B.		

–  Anomaly	(outlier)	and	novelty	detections	=	identifying	items,	events	or	
observations	that	do	not	conform	to	an	expected	pattern.	Anomaly	
detection	can	also	be	a	supervised	learning.	Ex:	structural	defects,	
medical	problems,	text	errors,	or	bank	fraud		

•  Applications	
–  Grouping	breast	cancer	patients	by	their	genetic	markers	
–  Grouping	Movie	viewers	by	the	ratings	assigned	by	movie	viewers	
–  Finding	sale	items	that	are	highly	related	can	be	very	helpful	when	

stocking	shelves	or	doing	cross-marketing	in	sales	promotions,	catalog	
design,	and	consumer	segmentation	based	on	buying	patterns.	
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•  Apriori	Algorithm	for	Association	Rule		
–  Identify	the	frequent	individual	items	in	the	relational	database	and	

extends	them	to	larger	and	larger	item	sets	as	long	as	those	item	sets	
appear	sufficiently	often	in	the	database	

•  Principal	Component	Analysis	(PCA)		
–  Find	a	low-dimensional	representation	of	the	observations	
–  Sequentially	find	a	set	of	linear	combinations	of	the	predictors	that	

have	maximal	variance	and	are	orthogonal	with	each	other.		
•  K-Means	Clustering	for	Dimension	Reduction	

–  Partition	the	N	observations	into	a	pre-specified	K	clusters	so	as	to	
minimize	the	within-cluster	sum	of	squares:		

•  Hierarchical	Clustering	for	Dimension	Reduction	
–  Yields	a	tree-like	visual	representation	(Dendrogram)	of	the	

observations	without	pre-specified	number	of	clusters	

Common	Unsupervised	Learning	Algorithms	
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Hierarchical	Clustering	Algorithm	
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Hierarchical	Clustering	For	Breast	Cancer	Patients		
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Heatmap	of	Gene	Samples	

75	



Applications	Of	Clustering	Methods	
•  Böcke	et	al	(2005),	a	hierarchical	clustering	approach	for	large	compound	libraries	
•  Wallner	et	al	(2010)	studied	correlation	and	cluster	analysis	of	immunomodulatory	

drugs	based	on	cytokine	profiles.		
•  Tan	et	al	(2015)	and	Rasool	et	al	(2013)	use	neural	network	filtering	methods	are	

used	for	extracting	representations	that	best	describe	the	gene	expressions.		
•  Haraty	et	al	(2015)	studied	an	enhanced	k-mean	clustering	algorithm	for	pattern	

discovery	in	health	data.		
•  Yildirim	et	al	(2014)	use	k-means	algorithm	to	discover	hidden	knowledge	in	health	

records	of	children	and	data	mining	in	bioinformatics.	They	conclude	that	medical	
professionals	can	investigate	the	clusters	which	our	study	revealed,	thus	gaining	
useful	knowledge	and	insight	into	this	data	for	their	clinical	studies.		

•  Hameed	ert	al	(2018)	proposed	a	two-tiered	unsupervised	clustering	approach	for	
drug	repositioning	through	heterogeneous	data	integration.	

•  MacCuish	et	al	(book,	2019),	clustering	in	bioinformatics	and	drug	discovery	
•  Ma	et	al	(2019),	a	comparative	study	of	cluster	detection	algorithms	in	protein–

protein	interaction	for	drug	target	discovery	and	drug	repurposing.	
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Reinforcement	Learning	(RL)	
•  Learning	

–  Optimize	a	utility	Function		
–  Feedback	from	one’s	environment	is	essential	for	RL.		
–  For	the	situation	when	the	correct	answer	is	difficult	to	define	or	there	

are	too	many	possible	paths	to	complete	the	task.		
•  Example	-AlphaGo	Zero	

–  A	computer	program	that	plays	the	board	game	Go	
–  At	the	2017	Future	of	Go	Summit,	beat	the	world	No.1	ranked	player	
–  AlphaGo	and	its	successors	use	a	Monte	Carlo	tree	search	algorithm	to	

find	its	moves	based	on	knowledge	learned	by	an	ANN	from	both	
human	and	computer	play		

•  Methods	
–  Stochastic	Decision	Process	
–  Q-Learning		

•  Applications	
–  Markov	Decision	Process	for	clinical	development	programs	(Chang,	

2010)	
–  Value	iteration	and	policy	iteration	algorithms	
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Phase	Transition	Probabilities	Of	Clinical	Trials		
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Source:	Chang	et	al.	(2019)	



Markov	Chain	For	Clinical	
Development	Program		
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Source:	Chang,	2010;	Chang	et	al.	2019	

Pij	=	Actual	Phase	Transition	Probability	from	Phase	i	to	Phase	j	for	
all	disease	indications	



SDP	=	Markov	chain	&	action	rules	(called	
policy)	to	optimize	the	NPV	at	each	stage.	
Backward	induction	&	dynamic	programming	
used	to	solve	the	problem.	
Action	=	trial	design	and	conduct,	……	

Sequential	Decision	Process	(SDP)	
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Source:	Chang,	2010;	Chang	et	al.	2019	
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Stochastic	Decision	Process	For	A	Cancer	Clinical	
Development	Program	(CDP)	
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Source:	Chang	et	al.	2019	



Swarm	Intelligence	(SI)	
•  Self-Organized	System	(SOS)		

–  SOS	=	Systems	in	which	organized	behavior	arises	without	a	centralized	
controller	or	leader	

–  Stigmergy	=	a	mechanism	of	indirect	coordination	between	agents:	the	trace	
left	in	the	environment	by	an	action	stimulates	the	performance	of	a	next	
action,	by	a	different	agent.	

•  Swarm	Intelligence	(SI)	
–  SI	=	intelligence	possessed	by	SOS	without	common	goal	and	leader	

•  Characteristics	of	SI	
–  Micro	motived	and	macro	consequence	(genotype	versus	phenotype)	
–  Each	individual	in	SOS	has	no	intelligence	and	follow	a	simple	rule.		
–  Ex:	each	ant	simply	follows	the	hormone,	but	the	colony	behaves	intelligently	

in	finding	the	shortest	path	to	the	food	source			
–  SI	is	not	own	by	any	individual	

•  SI	Examples	in	Nature	
–  Ant	colonies,	bird	flocking,	animal	herding,	bacterial	growth,	fish	schooling,	

and	microbial	intelligence	
•  Artificial	Swarm	Intelligence	Algorithms	

–  Particle	swarm,	Ant	colony,	Artificial	bee	colony,	Artificial	immune	systems,,	
Gravitational	search,	Glowworm	swarm,	and	Bat	algorithms	
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How	Swarm	Intelligence	Works	
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Swarm	Intelligence:	
Every	ant	follow	the	
smell,	collectively	the	
ant	colony	quickly	find	
the	shortest	path	
without	the	guidance	of	
any	central	intelligence	



Swarm	Intelligence	Applications	
•  A	central	part	of	the	rational	drug	development	process	is	the	prediction	of	the	

complex	structure	of	a	small	ligand	with	a	protein,	the	so-called	protein-	ligand	
docking	problem,	used	in	virtual	screening	of	large	databases	and	lead	
optimization.		

•  Korb	et	al	(2006)	developed	a	docking	algorithm	based	on	ant	colony	optimization,	
to	structure-based	drug	design.		

•  Fu,	et	al.	(2015)	studied	a	new	approach	for	flexible	molecular	docking	based	on	
swarm	intelligence.	They	compute	the	interactions	of	23	protein-ligand	complexes.		

•  Rajeshkumar	and	Kousalya	(2017)	present	a	view	on	applications	of	swarm-based	
intelligence	algorithms	in	pharmaceutical	in-	dustry,	including	drug	design,	
pharmacovigilance,	and	alignment	of	sequence.		

•  Soulami,	et.	Al.	(2017)	used	a	particle	swarm	optimization	(PSO)	based	algorithm	
for	detection	and	classification	of	abnormalities	in	mammographic	images	using	
texture	features	and	support	vector	machine	(SVM)	classifiers.		

•  Fang	et.	al.	(2018)	presented	a	novel	feature	selection	called	the	elite	search	
mechanism-based	flower	pollination	algorithm	(ESFPA)	used	to	determine	protein	
essentiality.	ESFPA	uses	an	improved	SI	algorithm	for	feature	selection	and	selects	
optimal	features	for	protein	essentiality	prediction.		

•  The	metaheuristicOpt	package	in	R	includes	many	optimization	algorithms	
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Evolutionary	Intelligence	(EI)	
•  Inspiration	by	Natural	Evolution	Process	

–  Inspired	by	our	understanding	of	biological	evolution	
•  Minimal	or	No	Specification	of	Solution	Structure	

–  Automatically	solves	problems	without	requiring	the	user	to	
know	or	specify	the	form	or	structure	of	the	solution	in	
advance.	

•  Solution	Improvement	Via	Evolution	
–  Generation	by	generation,	stochastically	transform	populations	
of	computer	programs	into	new	populations	of	programs	that	
will	effectively	solve	problems.	

•  Genetic	Algorithm	(GA)	versus	Genetic	Programming	(GP)	
–  Both	use	evolution	algorithms	
–  GA	is	represented	as	a	list	of	actions	and	values,	often	a	string	
–  GP	is	represented	as	a	tree	structure	of	actions	and	values,	
usually	a	nested	data	structure.		
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Genetic	Programming	

Three	Key	Elements	in	GP:	
	
(1)	Representation:	Syntax	Tree		

		Mathematical	or	compound	structure	
(2)	Reproductive	Mechanism:	Crossovers	and	Mutations	

Crossover	=	combination	of	two	randomly	selected	data	structures	to	produce	
one	new	structure.		
A	mutation	=	randomly	generates	a	subtree	to	replace	a	randomly	selected	
subtree	from	a	randomly	selected	individual.		

(3)	Survival	Fitness		
For	finding	a	function	g(x)	to	approximate	the	target	function	f(x),	the	fitness	=	
the	mean	square	error	between	the	two	functions.		
For	finding	a	optimal	treatment	sequence	for	infertility,	the	fitness	function	=	
treatment	success		(1	for	success	and	0	for	failure).	
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Genetic	Algorithm	For	Treatment	Strategy	Optimization		
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The	population	(treatment	sequences)	
changes	constantly	since	survivability	is	a	
function	of	fitness	or	observed	effect	of	
treatment	sequence		

Treatment	sequences	for	
treating	women	infertility	



Application	Of	Evolutionary	Intelligence	
•  RNA	structure	prediction	(Batenburg	et	al,1995)	
•  Molecular	structure	optimization	(Wong,	et	al.	2011)	
•  Ghosh	and	Jain	(2005)	collected	articles	across	a	broad	range	of	topics	on	

the	applications	of	evolutionary	AI	in	drug	discovery,	GP	in	data	mining	for	
drug	discovery	

•  Barmpalex,	et.	al.	(2011)	has	used	symbolic	regression	via	genetic	
programming	in	the	optimization	of	a	controlled	release	pharmaceutical		
formulation	and	compared	its	predictive	performance	to	ANNs.		

•  Ghaheri,et.	al.	(2015)	reviewed	the	applications	of	the	genetic	algorithm	in	
disease	screening,	diagnosis,	treatment	planning,	pharmacovigilance,	
prognosis,	and	health	care	management.		

•  Ghaheri	et	al	(2019)	provided	an	comprehensive	review	of	the	
applications	of	genetic	algorithms	in	medicine,	in	14	different	areas:		
–  radiology,	oncology,	cardiology,	endocrinology,	obstetrics	and	gynecology,	

pediatrics,	surgery,	infectious	diseases,	pulmonology,	radiotherapy,	
rehabilitation	medicine,	orthopedics,	neurology,	pharmacotherapy,	and	health	
care	management.		
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Review	&	Summary	
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Unsupervised	
Learning	

Machine	
Learning	

Reinforcement	
Learning	

Evolutional	
Learning	

Swarm	
Intelligence	
Learning	

Supervised	
Learning	

List	Of	Machine	Learning	Methods	
Details	and	References	Available	from	the	Upcoming	Book	(Chang,	2020)	

-	Link	analysis	
-	PCA	
-	K-Means	
-	Hierarchical			
			Clustering	
-	SOM	

-	SBML	
-	KNN	
-	Deep	learning	
(FNN,	CNN,	RNN,	
DBN)		
-	Kernel	method	
-	SVM	
-	GANs		
-	Autoencoders	
-	Decision	tree	
(bagging,	Boosting,	
Random	forest)	
-	Logistic	regression		
-	Ridge,	lasso,	elastic	
			net	regressions	
-	Bayesian	network	

-	Sequential	decision	
			process	
-	Bayesian	Q-learning	

-	Genetic	algorithm		
-	Genetic	programming	
-	Cellular	automata		

-	Ant	clustering	model		
-	Particle	swarm		
		optimization		(PSO)	



Copyright®		Mark	Chang,	PhD,	AGInception,	
Boston	University,	2019	 91	

AI	
Applications	

	

Kernel	Method	for	
Protein	Classification	
&		Biological	
Sequences	

Drug	
Discovery	

Healthcare	

Microarray	Data	
Analysis	

Drug	
Development	

SBML	for	Clinical	
Trials	of	Rare	
Disease	&	Precision	
Medicine		

Deep	Learning	
(FNN,	CNN,	RNN,	
LSTM,	DBN)	for	drug	
design	&	molecule	
classification	

Decision	Tree,		
Random	Forest	for	
bioactivity	
classification,	protein-
ligand	binding,	toxicity	
modeling	

LDA	for	drug-drug	
interaction,	kNN	for	
drugable	molecules	
identification,	SVM		
for	DNA-binding	
protein	prediction,	
Network	similarity	for	
disease	modeling	

NLP	for	Pharmacovigilance:		
Auto-narrative	generation,	
narrative	analysis,	QC	
assessment,	causality	
assessment.	develop	
disease	models,	
probabilistic	clinical	risk	
stratification	models,	and	
practice-based	clinical	
pathways	

Disease	Diagnosis	
&	Prognosis	with	
Medical	Image	

Data	

NLP	for	Medical	
Records:	text	
processing,		
classification	

KNN,	SVM,		CNN,		
AdaBoost,	Autoencoder	
for	Cancer	Detection	
from	Gene	Expression	
Data	

ANN	&	SOM	
ensembles	for	
gene-related	
clustering	

CNN	for	tumor	detection,	
segmentation,	
classification,	and	
computer-aided	
diagnosis,	breast	cancer	
(mammography),		
lung	diseases,	lesion	
segmentation	for	
traumatic	brain	injuries,	
brain	tumor,		CV	disease	
with	Cardiological	image		

List	Of	AI	Applications	
Details	and	References	Available	from	Upcoming	Book	(Chang,	Feb	2020)	

Structure-
Activity	

Relationship	
(QSAR)	

SVM	for	disability	
due	to	stroke,		
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Similarity-Based	Machine	Learning	in	R	(1)		
library(class)	
#	Normalize	data	(by	subtracting	Mean	and	Dividing	by	SD	of	the	RefData	
normalizeData	=	function(DataToNormalize,	RefData){	
		normalizedData	=	DataToNormalize	
		for	(n	in	1:ncol(DataToNormalize)){	
				normalizedData[,n]	=	(DataToNormalize[,n]	-	mean(RefData[,n]))	/	sd(RefData[,n])	
		}	
		return(normalizedData)	
}	
#	Calculate	initial	scaling	factors	R0s	#	S0s	=	p-values	
InitialRs	=	function	(X,	eta,	S0s)	{	
		K	=	length(S0s);	R0s	=	rep(0,	K)	
		for	(k	in	1:K)	{	
				#	force	<12	to	avoid	s=exp(d)	overflow	
    R0s[k] = min((-log(S0s[k])) ^(1/eta) / max(IQR(X[ ,k]), 0.0000001), 12) 
		}	
		return	(R0s);	
}	
Distance	=	function	(Rs,	x1,	x2)	{	
		#	3	vectors:	Rs	=	scaling	factors,	x1	=	point	1,	x2	=	point	2	
		K	=	length(Rs)	
  d = 0; for (k in 1:K) { d = d + (Rs[k]* (x2[k]-x1[k]))^2 } 
		return	(d^0.5)	
}	
#	Calculate	Similarity	Score.	
SimilarityTrain	=	function(eta,	Rs,	Xtrain)	{	
		N1	=	nrow(Xtrain);	K	=	length(Rs);	
  S = matrix(0, nrow=N1, ncol=N1) 
		for	(i	in	1:N1)	{	for	(j	in	i:N1)	{	
														    d2 = 0; for (k in 1:K) { d2 = d2 + (Rs[k]* (Xtrain[i,k]-Xtrain[j,k]))^2 } 
				S[i,j]	=	exp(-d2^0.5)	#	avoid	0	for	i=j	
				S[j,i]=S[i,j]	#	Use	symmetry	to	reduce	50%	CPU	time.	
		}	}	#	End	j	and	i	loops	
		return	(S)	
}	
#	Calculate	Similarity	Scores	between	training	and	test	subjects.	
Similarity	=	function(eta,	Rs,	Xtrain,	Xtest)	{	
		N1	=	nrow(Xtrain);	N2=nrow(Xtest);	K	=	length(Rs)	
  S = matrix(0, nrow=N2, ncol=N1) 
		for	(i	in	1:N2)	{	for	(j	in	1:N1)	{	
			 d2 = 0; for (k in 1:K) { d2 = d2 + (Rs[k]* (Xtest[i,k]-Xtrain[j,k]))^2 } 
    S[i,j] = exp(-d2^0.5) 
		}	}	#	End	j	and	i	loops	
		return	(S)	
}	
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Weight	=	function(S)	{	
  N1= nrow(S); N2=ncol(S); 
		W	=	matrix(0,	nrow=N1,	ncol=N2)	
		for	(i	in	1:N1)	{	
				sum_S_row	=	sum(S[i,	])	
				for	(j	in	1:N2)	{	W[i,j]	=	S[i,j]	/	max(sum_S_row,0.00000000001)	}		
		}	
		return	(W)	
}	#	End	of	Weight	
PredictedY	=	function	(W,	Ytrain,	Ytest)	{	
		#	Calculate	predicted	outcome	and	Error	
		OutObj	=	list()	
		OutObj$pred_Y	=	W	%*%	Ytrain	#	For	binary	outcome,	pred_y	=	prob	of	1.	
		OutObj$MSE	=	mean((OutObj$pred_Y	-	Ytest)^2)	
			return	(OutObj)	
}	#	End	of	PredictionY	
DerivativeE	=	function(eta,	pred_Y,	Rs,	X,	S,	O)	{	
		#	Derivatives	if	the	loss	function	
		N	=	nrow(X);	K	=length(Rs)	
		der_S	=	matrix(0,	nrow=K*N,	ncol=N);	der_W	=	matrix(0,	nrow=K*N,	ncol=N)	
		dist	=	matrix(0,	nrow=N,	ncol=N);	der_E	=	rep(0,	K)	
		for	(i	in	1:N)	{	for	(j	in	i:N)	{
    d2 = 0; for (k in 1:K) { d2 = d2 + (Rs[k]* (X[i,k]-X[j,k]))^2 }
				dist[i,j]	=max(d2^0.5,	0.0000001)	#	avoid	overflow	in	der_d	below	
				dist[j,i]=dist[i,j]	
				}}	#	End	of	i	and	j	loops	
		for	(m	in	1:K)	{	for	(i	in	1:N)	{	for	(j	in	i:N)	{	
    der_d = (Rs[m]/dist[i,j]) * (X[i,m]-X[j,m]) ^2
    der_S[(m-1)*N+i, j] = -1 * S[i,j] * eta * (dist[i,j])^(eta-1) * der_d
    der_S[(m-1)*N+j, i] =der_S[(m-1)*N+i, j]
		}	}	}	#	End	of	j,	i,	and	m	loops	
		#	Weight	Derivative	
		for	(m	in	1:K)	{	for	(i	in	1:N)	{	
    sum_der_S = sum(der_S[(m-1)*N+i, ]); sumSi = sum(S[i, ])
				for	(j	in	i:N)	{	
      der_W[(m-1)*N+i, j] = der_S[(m-1)*N+i, j] / sumSi - S[i,j]* sum_der_S /sumSi^2
      der_W[(m-1)*N+j, i] =der_W[(m-1)*N+i, j]
				}	}	}	#	End	of	j,	i,	and	m	loops	
		#	Derivatives	of	E	
		for	(m	in	1:K)	{	for	(i	in	1:N)	{	
				err	=	2/N	*(pred_Y[i]	-	O[i])		#	For	mean	squared	error	
    for (j in 1:N) { der_E[m] = der_E[m] +  err * O[j] * der_W[(m-1)*N+i, j] }
		}	}	#	End	of	I	and	m	loops	
		return	(der_E)	
}	#	End	of	DerivativeE	
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Similarity-Based	Machine	Learning	in	R	(2)	

Learning	=	function	(LearningRate,	Lamda,	Rs,	der_E)	{	
		#	Update	scaling	factors,	Rs.	
		K=length(Rs)	
		der_lossFun	=	der_E+2*Lamda*Rs	#	derivatives	of	loss	function	
		Rs	=	Rs	-	LearningRate	*	der_lossFun	
		#	force	Rs<25	to	avoid	S=exp(d)	overflow	
  for (m in 1:length(Rs)) { Rs[m] = min(max(0,Rs[m]),25) }
		return	(Rs)	
}	#	End	of	Learning	
#	Training	AI	to	obtain	scaling	factors,	Rs	###	
SBMLtrain	=	function(Epoch,	S0,	Lamda,	LearningRate,	eta,	Xtrain,	Ytrain)	{	
		TrainObj=list();	OutObj0=	list();	OutObj=	list()	
		R0	=	InitialRs(Xtrain,	eta,	S0);	
		S	=	SimilarityTrain(eta,	R0,	Xtrain)	
		OutObj0	=	PredictedY	(Weight(S),	Ytrain,	Ytrain)	
		Rs=R0;	OutObj	=OutObj0	#	in	case	Epoch	=0	for	no	learning	
		TrainMSE0	=	OutObj0$MSE	
		preLoss	=	OutObj0$MSE+Lamda*sum(Rs^2)	
		#	Learning	
  iter=0;
		while	(iter<Epoch)	{	
				preRs=Rs	
				Rs	=	Learning(LearningRate,	Lamda,	Rs,	DerivativeE(eta,	OutObj0$pred_Y,	Rs,	Xtrain,	S,	Ytrain))	
				OutObj	=	PredictedY	(Weight(SimilarityTrain	(eta,	Rs,	Xtrain)),	Ytrain,	Ytrain)	
				iter=iter+1	
				Loss	=	OutObj$MSE+Lamda*sum(Rs^2)	
				if	(Loss>preLoss)	{Rs=preRs;	iter=Epoch+1}	
				preLoss=Loss	
		}	
		TrainObj$Rs	=	Rs;	TrainObj$Y	=	OutObj$pred_Y;	TrainObj$MSE	=	OutObj$MSE	
		return(	TrainObj)	
}	
#	Linear	regression	
#	outcome	=	"gaussian"	or	"binomial",	...	
GLMPv	=	function(Y,	X,	outcome)	{	
		LMfull=glm(Y	~.,	data=X,	family=outcome)	
		sumLM=coef(summary(LMfull))	
  pVals=sumLM[,4][1:ncol(X)+1]
		return	(pVals)	
}	
	
	
	

#	Example	with	Simulated	Multivariate	Normal	Data			
#	covariance	matrix	for	creating	correlated	X.		
library(mvtnorm)	
sigma	=	matrix(c(1,	0.0,	0.6,	0.2,	0.0,	0.0,	0.0,		
																															0.0,	1,	0.0,	0.0,	0.0,	0.0,	0.0,	
																															0.6,	0.0,	1,	0.5,	0.0,	0.0,	0.0,	
																															0.2,	0.0,	0.5,	1,	0.0,	0.0,	0.0,	
																															0.0,	0.0,	0.0,	0.0,	1,	0.0,	0.0,	
																															0.0,	0.0,	0.0,	0.0,	0.0,	1,	0.0,	
																															0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	1),	ncol=7)		
mu=c(0,0,0,0,0,0,0)	#	7	multivarite	normal	means	
initS	=	rep(0.5,	7)	#	7	intial	similarities.	
xTrain	=	rmvnorm(n=40,	mean=mu,	sigma=sigma)	
xTest	=	rmvnorm(n=40,	mean=mu,	sigma=sigma)	
#	Construct	y	that	are	not	linearly	related	to	x	
Ytrain=xTrain[,1]+xTrain[,2]*xTrain[,3]+xTrain[,4]^2+xTrain[,5]	
Ytest=xTest[,1]+xTest[,2]*xTest[,3]+xTest[,4]^2+xTest[,5]	
#	Data	normalization	
	Xtrain	=	as.data.frame(normalizeData(xTrain,	xTrain))	
	Xtest	=	as.data.frame(normalizeData(xTest,	xTrain))	
#	Assign	p-value	from	LM	to	initial	similarities	
#	initS	=	GLMPv(Y=Ytrain,	X=Xtrain,	outcome	=	"gaussian”)	
	
mySBMLtrain=SBMLtrain(Epoch=5,	S0=initS,	Lamda=-0.5,	LearningRate=0.125,	
eta=1,	Xtrain,	Ytrain)	
myPred=PredictedY(Weight(Similarity(eta=1,	mySBMLtrain$Rs,	Xtrain,	
Xtest)),Ytrain,	Ytest)	
#	MSE	using	training	mean	for	prediction	
plot(myPred$pred_Y,	Ytest)	
mse1=mean((Ytest-mean(Ytrain))^2)	#	naive	mse	
mse2=myPred$MSE		#	Probability	error	
avemse1=avemse1+mse1/50	
avemse2=avemse2+mse2/50	
}	
avemse1;	avemse2	
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