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Disclaimer

The views and opinions expressed in this presentation and on the slides are
solely those of the presenter and not necessarily those of Novartis. Novartis does
not guarantee the accuracy or reliability of the information provided herein.
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Agenda

10:00 — 11:40 AM
» Introduction to causal effects & potential outcomes (Heinz Schmidli)

» Relation to questions and concepts encountered in randomized clinical trials
(Bjorn Bornkamp)

12:00 - 1:30 PM
= Standardization & inverse probability weighting (Dong Xi)
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Part 1:
Introduction to causal effects
and potential outcomes
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Outline

= Causal effects

= Potential outcomes

» Causal estimands

= Causal inference

= Clinical development

= Conclusions

»
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Causal effects

Does smoking cause lung cancer?

7 Public

Cancer and Smoking

The curious associations with lung
cancer found in relation to smoking
habits do not, in the minds of some of
us, lend themselves easily to the
simple conclusion that the products of
combustion reaching the surface of the
bronchus induce, though after a long
interval, the development of a cancer.

Ronald A. Fisher
Nature 1958;182(4635):596.
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Causal effects

Directed Acyclic Graph (DAG) to express causal relationships

Smoking causes cancer

Patient characteristic X causes
both smoking and cancer

8 Public

Smoking

>| Cancer

Smoking

Cancer
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Poll guestion 1

Do you believe that smoking causes lung cancer?

= YES
= NO
Why?

U NOVARTIS | Reimagining Medicine

9 Public



Causal effects

Smoking and lung cancer: recent evidence
and a discussion of some questions™

Jerome Cornfield," william Haenszel,? E. Cuyler Hammond,’> Abraham M. Lilienfeld,”
Michael B. Shimkin’® and Ernst L. Wynder®

J. Nat. Cancer Inst. 22:173-203, 1959

“The magnitude of the excess lung-cancer risk

among cigarette smokers is so great that the Hypothetical Agent
results can not be interpreted as arising from an

indirect association of cigarette smoking with some \
other agent or characteristic, since this

hypothetical agent would have to be at least as Smoking Clancer
strongly associated with lung cancer as cigarette

use; no such agent has been found or suggested.”
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Causal effects

Smoking and lung cancer: recent evidence
and a discussion of some questions™

Jerome Cornfield," william Haenszel,? E. Cuyler Hammond,’> Abraham M. Lilienfeld,”
Michael B. Shimkin’® and Ernst L. Wynder®

J. Nat. Cancer Inst. 22:173-203, 1959

“The consistency of all the epidemiologic and experimental evidence also
supports the conclusion of a causal relationship with cigarette smoking,
while there are serious inconsistencies in reconciling the evidence with
other hypotheses which have been advanced.*”

Smoking > Cancer

U NOVARTIS | Reimagining Medicine
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Causal effects

Association, Prediction, Causality

= Carrying a lighter is strongly associated with
lung cancer

= \Whether or not somebody carries a lighter is
predictive of lung cancer

= But this is not a causal relationship!

In some settings, having a good predictive model may be sufficient.
In others, causality is of main interest
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Presenter
Presentation Notes
E.g. predicting the time of the next COPD exacerbation


Potential outcomes

Mathematical language needed to express causal questions quantitatively, and to
make causal inference

Potential outcomes framework provides this language
= Neyman (1923), Rubin (1974)
= Widely accepted (Robins, Pearl, Hernan, ...), with few exceptions (e.g. Dawid)

Requires a thought experiment:
What would outcomes be if action 1 vs 2 was taken?

(Some authors use the term counterfactuals rather than potential outcomes. Others use the
term counterfactual for the potential outcome not observed)

> NOVARTIS | Reimagining Medicine

13 Public



Potential outcomes

A clinical study of Test (Z=1) vs Control (Z=0) treatment
— Population: patients with small-cell lung cancer
— Variable: time-to-death Y in years, from time of treatment assignment

Potential outcome framework
# Patient Y(1) Y(0)

1 Adam 2 1
2 Bruce 5 7 For the whole population
3 ..

Potential outcomes Y (1), Y(0):

* Y(1): how long the patient would live if assigned to Test (Z=1)
* Y(0): how long the patient would live if assigned to Control (Z=0)

14 Public U NOVARTIS | Reimagining Medicine



Potential outcomes

A study

The critical requirement is that
to be a causal effect, the

Control (Z=0) Test (Z=1) comparison must be a
comparison of Y,(1) and Y, (0)
for a common set of units.

Association Causation

Y |Z=0 vs. Y|Z=1 Y(0) vs. Y(1) More formally, a cgusal effect
must be a comparison of the

ordered sets {Y,(1), i € S} and
{Y,(0), 1 € S}, not {Y,(1),i € S;}
and {Y;(0), i € Sy}, where S,
and S, are not equal.

Rubin (2006) JASA

Hernan, Robins (2020)
15 Public U NOVARTIS | Reimagining Medicine



Causal estimands

Potential outcome framework
# Patient Y(1) Y(0)
1 Adam 2 1
2 Bruce 5 4

Y(1), Y(0): how long patient would live if assigned to Test (1) or Control (0)
Treatment effect measure: population causal estimand
eg. E[Y(1)-Y(O)]=E[Y(1)]-E[Y(0)]

Many alternative causal estimands, e.g.
— E[log{Y(1)}] - E[log{ Y(0)}]=E[log{ Y(1)/Y(0O) }] Accelerated Life Time
— Median{ Y(1) } / Median{ Y(0) } Median survival times
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Causal estimands

A study

Control (Z=0) <> Test (Z=1)
Association Causation

E[Y|Z:1]—E[V w] - E[Y(0)]

p O
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Causal estimands

US National Academy of Science (2010)

“The trial protocol should explicitly define

» the objective(s) of the trial;

» the associated primary outcome or outcomes;

= how, when, and on whom the outcome or outcomes will be measured,;

= The measures of intervention effects, that is, the causal estimands of
primary interest.

These measures should be meaningful for all study participants, and
estimable with minimal assumptions.”

18 Public U NOVARTIS | Reimagining Medicine



Causal estimands

ICH E9(R1) Estimands and Sensitivity Analysis in Clinical Trials
(2019)

Aligned with causal reasoning, although term “causal”’ not used.

“Central guestions for drug development and licensing are to establish
the existence, and to estimate the magnitude, of treatment effects:

How the outcome of treatment compares to what would have happened
to the same subjects under alternative treatment (i.e. had they not
received the treatment, or had they received a different treatment).”
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Causal inference

For each patient, at most one of Y(1) or Y(0) observed.
‘Fundamental problem of causal inference’ Holland (1986)

Potential outcomes Observed
# Patient Y(1) Y(0) Treatment Z Y Y(1) Y(0)
1 Adam 2 1 1 2 2 ?
2 Bruce 5 7 0 I ? 4

Population causal estimand, e.g. E[ Y(1) ]— E[ Y(0) ]

In randomized controlled trials (RCTS):
E[Y(1)]-E[Y(©O)] = E[Y[Z=1]-E[Y|Z=0]
20 Public U NOVARTIS | Reimagining Medicine



Causal inference

Generally: E[Y(1)]-E[Y(0)] # E[Y|Z=1]-E[Y|Z=0]

Models/assumptions needed for statistical inference on the causal estimand
(causal inference):
= Model for assignment of treatment to patients

= Model for potential outcomes

Essential for observational studies, but also for some scientific questions in
RCT’s due to post-baseline (intercurrent) events (examples following)

Two simple approaches for estimation of causal estimands discussed later:
standardization and inverse probability weighting
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Clinical development

= Causal questions are central to clinical development

= Randomization facilitates causal inference

= Complex questions regarding causality may arise in RCTs
= |tis important to recognize these

=  We will discuss some examples in the following
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ITT analysis
Poll guestion 2

Double-blind randomized trial with continuous endpoint Y at week 12
—> Patients randomized to daily doses of the investigational treatment (Z=1) or control (Z=0).

At the end of the trial one calculates
Mean[Y;| Z, = 1] — MeanlY,; | Z;= 0],

i.e., the difference in means between patients randomized to Z=1 and Z=0, regardless of how
frequently the patient takes the treatment.

Does this quantity estimate a causal effect?

= YES
= NO

> NOVARTIS | Reimagining Medicine
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ITT analysis

Definition of causal effect:
Comparison of {Y,(1), i € S} and {Y,(0), i € S},
and not
{Yi(1), i € S;} with {Y,(0), i € Sy}, where S; and
S, are not equal.

= Recall definition of causal effect

= Zrandomized - patients with Z=1 and Z=0 constitute ,the same* population
= (formally Y(0),Y (1) L Z see next session)

» Yes, this is estimating a causal effect

= Estimand of the analysisis: E[ Y(1) ] - E[ Y(0) ]
= Can be estimated by the difference in observed means

25 Public U NOVARTIS | Reimagining Medicine



B
ITT analysis

But: The causal effect of what?

» Causal effect of being randomized to a treatment
- Does this correspond to a clinically relevant question?
Depends...

= on whether post-baseline events & subsequent actions will also occur in the same
way in a real-life setting, on level of adherence to treatment, ...

= |TT does not estimate the effect of treatment: ,had everyone adhered*
= Different question!

» Causal inference requires clear definition of what ,treatment” constitutes
(SUTVA, consistency assumptions, see slide notes)
= |f there are multiple versions of ,treatment” potential outcomes not well-defined
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Presenter
Presentation Notes
SUTVA: Stable Unit Treatment Value Assumption
No interference between patients (Cox, 1965), i.e. potential outcomes for a patient are not affected by potential outcomes of other patients, e.g. Interference occured in early AIDS trials: patients shared tablets
No hidden versions of treatments (Rubin,1980), e.g. Hidden varying skills of medical doctors administrating injection 

Consistency assumption (Robins, 1986)
For a patient assigned to treatment 1, the observed outcome Y = Y(1) 
For a patient assigned to treatment 0, the observed outcome Y = Y(0) 
SUTVA (ii) implies consistency assumption 



B
ITT analysis

= Final ICH E9 addendum: , Treatment" is an additional estimand attribute.
= For treatment policy (ITT) strategy, intercurrent events become part of ,treatment” attribute
= Will (hopefully) lead to more transparency

= No longer
= Treatment: 150mg twice daily

= Now

» Treatment: Initiate 150mg twice daily + optional rescue medication + optional switch to
another treatment if an adverse event requiring treatment discontinuation occurs.

= Clinical relevance of treatment policy strategy for dealing with intercurrent events
(rescue medication, AE above) needs to be assessed on a case-by-case basis
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Presenter
Presentation Notes
SUTVA: Stable Unit Treatment Value Assumption
No interference between patients (Cox, 1965), i.e. potential outcomes for a patient are not affected by potential outcomes of other patients, e.g. Interference occured in early AIDS trials: patients shared tablets
No hidden versions of treatments (Rubin,1980), e.g. Hidden varying skills of medical doctors administrating injection 

Consistency assumption (Robins, 1986)
For a patient assigned to treatment 1, the observed outcome Y = Y(1) 
For a patient assigned to treatment 0, the observed outcome Y = Y(0) 
SUTVA (ii) implies consistency assumption 



Randomization in DAGs

No arrow from X \

to Z due t0 =—
randomization _—

Y

Z — treatment
Y —outcome
X — patient covariates

L

As there is no arrow pointing into Z in this DAG, all the association between Z and Y,
must be due to the causal effect of Z on Y (i.e. association = causation in this DAG)

28 Public
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Presenter
Presentation Notes
The DAG here describes the following assumptions:�* The arrow from X to Y indicates that there are covariates X that determine have an impact on Y.
   This means X and Y will be associated (e.g. X would explain Y in a regression of Y on X).�* With this trial we would like to investigate the effect of Z on Y.
* Randomization implies that there is no arrow from X to Z. This is important, it implies that the „population“ of patients
   for Z=1 and Z=0 are the same (covariates X are balanced across the arms Z=0 and Z=1)�
It is beyond this presentation to explain DAGs in detail. These two references have more information on DAGs
Hernán MA, Robins JM (2019). Causal Inference. Boca Raton: Chapman & Hall/CRC, forthcoming. https://www.hsph.harvard.edu/miguel-hernan/causal-inference-book/
Pearl, J. (2009) "Causal inference in statistics: An overview." Statistics surveys 3, 96-146. https://projecteuclid.org/euclid.ssu/1255440554
�The quick version is that a DAG implies that the joint probability distribution of all variables, V1, ..., VM  factorizes in this way
p  V 1 , …,  V M  =  m=1 M p( V m |P A m ) 
where PAm is the set of nodes in the graph with a direct arrow into Vm (the parents of Vm).�In words: Conditional on its direct causes, a variable Vm is independent of any variable for which it is not a cause.

Note that the conditional distributions p( V m |P A m ) are not further specified, e.g. what residual distribution is used
or how the different parent nodes interact in the conditional distribution of  V m . In some sense DAGs are hence „semiparametric“.





Observational data

Now assume the treating physician assigns treatment (Z) based on baseline

severity of the disease X.
Variable: time-to-death Y in years since start of treatment

Estimand: E[ Y(1) ] - E[ Y(O) ]

Y
L

DAG:

U NOVARTIS | Reimagining Medicine
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Observational data
X \

L

* Problem in this DAG
Non-causal path between Y and Z (with X pointing into Z): X is a
confounder and will induce (non-causal) association between Z and Y

30 Public U NOVARTIS | Reimagining Medicine
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Presentation Notes
The DAG in this situation, shows there is a problem.
First Z is influenced by X, and X also influences Y. So X is a confounder.

Z and Y might be associated even if there is no causal association between X and Y.

Or alternatively: The association between Z and Y is due to two paths the causal path Z -> Y
but also the non-causal path Z <- X -> Y.

Judea Pearl and others developed a formalism for analyzing DAGs and then (i) automatically determining on
whether the conditional effect of Z is a causal effect and if not (ii) deriving the variables that need to 
be adjust for.



.

Observational data example

X\

Y

L

» In this example estimand cannot be estimated by a comparison of the
observed means: Mean[Y; | Z, = 1] — Mean[Y; | Z,= 0]

= Populations on the two treatment arms are different: Observed difference can
be due to difference in treatment or difference in population

31 Public
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Observational data

Now assume the treating physician assigns treatment (Z) based on baseline
severity of the disease X.
Variable: time-to-death Y in years since start of treatment

# Patient Y(1) YO X

1 Adam 3 2 High 1 3
2 Bruce 4 4 Low 0 4
3 Carl 2 1 High 1 2
4  Dave 3 4 Low 0 4
Population Mean 3.00 2.75 Mean[Y; | Z=1] = (3+2)/2 = 2.50

Meanl[Y;| Z=0] = (4+4)/2 = 4.00
32 Public U NOVARTIS I Reimagining Medicine
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Presentation Notes
You can see that the patients having X=„high“ (Adam and Carl) generally die earlier (on treatment and control) compared to those with X=„low“.
But as these patients all get treatment Z=1 and the other all get treatment Z=0, treatment Z=0 looks better, when using the observed mean difference.�While on the population average level actually treatment Z=1 is better.


.

Observational data X \

= Unequal population on the treatment arms

= Cannot establish the causal effect according to Z
the definition of a causal effect mentioned earlier

= But DAG implies: Only X influences outcome Y

» To achieve ,the same population* across treatment arms, it is enough to balance X
across treatment groups (e.g. with standardization or inverse probability weighting)

= No unmeasured confounders assumption

= More formally: Conditional independence assumption Y(0),Y(1) L Z | X
(also called conditional ignorability or conditional exchangeability).
2Within levels of X randomized assignment of treatment Z*

33 Public U NOVARTIS | Reimagining Medicine


Presenter
Presentation Notes
With standardization one fits an adjusted model for Y depending on X and Z.
Based on this model one then predicts for every patient their outcome under control and treatment, the difference can then be considered a causal effect (the population on control and treatment is the same)

With inverse probability weighting one fits a model with Z as outcome and X as covariate. Then one weights indpatients on the two treatment arms in a way so that the observed populations in the two treatment arms are the same.

More on this in the next session.



Analyses based on per-protocol set
Poll guestion 3

Now again assume the setting of a randomized clinical trial.

Let A=1 and A=0 be inclusion or exclusion in the per-protocol set. Assume we
calculate

Mean[Y;| Z, =1, A, = 1] —Mean[Y;| Z,=0, A = 1],
l.e., the difference in means between patients that adhered to the protocol.
Does this quantity estimate a causal effect?

= YES
= NO

34 Public U NOVARTIS | Reimagining Medicine



Analyses based on per-protocol set

Let A(1) and A(O) be the potential outcomes of protocol adherence

In potential outcomes we would compare
= Mean[Y(1),| Z,=1, A(1), = 1] — Mean[Y(0), | Z;= 0, A(0), = 1]

= Population with A(1) = 1 (protocol adherers under treatment) and A(0) = 1
(protocol adherers under placebo) can be different
= Not a causal effect!

= Per-protocol analyses are discouraged in the final ICH E9 addendum.

35 Public U NOVARTIS | Reimagining Medicine



B
Analyses based on per-protocol set

Z —treatment
Y —outcome
A — protocol adherence

X X — patient covariates

36 Public U NOVARTIS | Reimagining Medicine
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Presentation Notes
This shows a DAG describing the situation.

As this is again a randomized trial, there is no arrow pointing into Z. 

Baseline characteristics (X) might influence adherence (A) and outcome (Y)
Z might influence adherence (A) and (Y).
And adherence (A) might influence outcome (Y).��There is a problem:
A is influenced by Z and X but A influences Y, so by subsetting to A=1 we will end up with different populations (different distribution of X) on Z=1 and Z=0.
Here A is called a collider node on the path from Z to Y via X.��



Analyses based on per-protocol set

37 Public

X

Z —treatment

Y —outcome
A — protocol adherence
X — patient covariates

If this DAG would be true,
the per-protocol analysis
would target a causal
effect as A is unaffected
by Z, so that A(1) = A(0)

U NOVARTIS | Reimagining Medicine



Analyses based on per-protocol set

What would be an estimand mimicking the idea of per-protocol analyses?

= Difference in means in patients that would adhere to the protocol under (i)
control and investigational treatment or (ii) only the investigational treatment

() E[Y(1)|Z=1,A(1)=1,A0)=1]-E[Y(0)]|Z=0,A(l) =1, A0)=1]

(i) E[Y(1)]|Z=1,A(1)=1]-E[Y(0)|Z=0, A1) = 1]

» Principal stratum strategy

38 Public U NOVARTIS | Reimagining Medicine



Analyses based on per-protocol set

= Estimand (i)
= only either A(O) or A(1) observed for every patient (never both)
» see Lou et al. (2019) for an interesting approach for testing & estimation in the context of
bioequivalence trials
= Estimand (ii)
= A(1) not observed on control arm
= can be harder to justify: Is Y(0) defined if A(0) = 0?

Alternative estimand based on hypothetical strategy

= Difference in means “had all patients adhered”

= Can be clinically hard to justify (depending on reason for protocol non-adherence)

» Final ICH E9 addendum discourages the hypothetical strategy for scenarios that would
change the patients’ behaviors (rather than change the study design)

39 Public U NOVARTIS | Reimagining Medicine



CANTOS trial

40

Canakinumab is a monoclonal anti-body blocking interleukin-13
resulting in decreased inflammation

Reducing inflammation without affecting lipid levels may reduce
the risk of cardiovascular disease

Level of inflammation measured by hsCRP
= |nflammatory marker: Known to have a prognostic effect: Larger values are

Public

associated with a higher risk of CV related events
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CANTOS trial

= CANTOS trial (Ridker et al. (2017))
» Tested whether canakinumab leads to reduction in the risk for CV events.
= Population: With previous myocardial infarction and hsCRP > 2 mg/L
» Treatment groups: 3 dose groups of canakinumab versus placebo
» Primary outcome: Time to first major adverse cardiovascular events (MACE)

= Result (for 150mg dose, focus only on this in what follows)
» Hazard ratio of 0.85 (significant in multiple test strategy)

= |dea

= Patients for whom the hsCRP is not lowered after 3 months might have a reduced
benefit from canakinumab (and those where a lowering is seen, an increased benefit)

41 Public U NOVARTIS | Reimagining Medicine



CANTOS trial

An analysis comparing patients with hsCRP < 2 mg/L at 3 months on canakinumab
(threshold achievers) to complete placebo group. Does this analysis estimate a
causal effect?

= YES
= NO

Assume now that we compare the threshold achievers on canakinumab to the
threshold achievers on placebo. Does this analysis estimate a causal effect?

= YES
= NO

42 Public U NOVARTIS | Reimagining Medicine



CANTOS trial

= None of these two analyses estimate a causal effect

* In both analyses treatment and population are confounded

= Populations ,threshold achievers on canakinumab “, ,threshold achievers on
placebo” and ,complete placebo group* are all different

= threshold achievers on treatment” likely to have lower baseline hsCRP than
,complete placebo“ - also likely to have better outcomes (hsCRP is prognostic)

= threshold achievers on placebo” likely to have lower baseline hsCRP than
Jthreshold achievers on treatment* - even more likely to have better outcomes

43 Public U NOVARTIS | Reimagining Medicine



®
CANTOS trial

= LetT(1) and T(0) denote time to event and S(1), S(0) hsCRP threshold
achievement under treatment and placebo

= Estimand of interest: P(T(1) >t | S(1)=1)-P(T(0)>1t]| S(1) =1)
= Survival probability at time t in the subgroup of patients that would hsCRP threshold
achievers at 3 months if on canakinumab
= Principal stratum estimand

= One possible analysis assumption: Identifying confounders X on hsCRP
response S(1) and outcome T(0) allows to re-introduce balance (e.g. using
methods introduced in the next session)
=+ careful handling of competing risk situation (intercurrent event vs MACE event)
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Presentation Notes
For more information on plausible estimands, assumptions and analyses in this case, see
Bornkamp, Björn, and Georgina Bermann. "Estimating the treatment effect in a subgroup defined by an early post-baseline biomarker measurement in randomized clinical trials with time-to-event endpoint." Statistics in Biopharmaceutical Research(2020) https://www.tandfonline.com/doi/full/10.1080/19466315.2019.1575280


Controversies In causal inference

» Causal inference split into different ,schools*
» Three main figures: Donald Rubin, Jamie Robins & Judea Pearl
= All came to causal inference from slightly different angles (with own notation etc)

= View on usefulness of DAGs
= No causation without manipulation
= Across-world assumptions

= Bayesian versus Frequentist
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Why do we need causal inference?

* Provides a language to discuss causal effects (potential outcomes & DAGS)

= applies in observational and randomized data situations (estimands underlying most
,Standard analyses* can be described in potential outcome language)

= See also Lipkovich et al (2020)

= Sheds new light on the understanding of some standard statistical practices
= LS means, interpretability of treatment effect parameters (odds ratio and hazard
ratio), see next session
= Will help implementing the ICH E9 addendum
= Adopts counterfactual viewpoint to define treatment effects
= Estimand strategies can be clearly described using potential outcome language
= Not all estimand strategies require specialized causal inference analysis techniques
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Agenda

10:00 — 11:40 AM
» Introduction to causal effects & potential outcomes (Heinz Schmidli)

» Relation to questions and concepts encountered in randomized clinical trials
(Bjorn Bornkamp)

12:00 - 1:30 PM
= Standardization & inverse probability weighting (Dong Xi)
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Standardization & Iinverse
probability weighting
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Outline

= Causal effect under (stratified) randomization
— Standardization
— Inverse probability weighting

= Extension to non-randomized data

= Conclusions
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Fundamental problem of causal
Inference

» For every patient, there are two potential outcomes
— Y(1) under treatment (Z = 1)
— Y(0) under control (Z = 0)

= Only one observed outcome
—Y=Y)ifz=1
—~Y=Y(0)ifZ=0
— Fundamental problem of causal inference (Holland, 1986)

= Causal inference aims to use observed outcomes (Y) to drawing conclusions
about potential outcomes (Y (1) and Y (0))

E[Y(1)] - E[Y(0)] PEIY|Z = 1] - E[Y|Z = 0]
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Assoclation vs. causation

Population of interest

Control <} Treatment
Association

Causation

E[Y|Z=1]- E[Y|y Ny(n] — E[Y(0)]

p
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Magic of randomization

» Because of randomization, the treated patients are “similar” to the control

patients
— Similarity with respect to measured covariates (e.g., age, gender, weight...)
— More importantly, with respect to unmeasured covariates and potential outcomes

= Randomization implies exchangeability: Y(0),Y(1) 1 Z
— Potential outcomes are independent of (or balanced with respect to) treatment
assignment
= Often use mean exchangeability (implied by exchangeability)

ElY(2)|Z =0] =ElY(2)|Z = 1]
— Mean of potential outcomes that would be observed with Z = z is the same among
those who actually got Z = 0 and thosewho got Z = 1

> NOVARTIS | Reimagining Medicine

54 Public



Causal effect under exchangeability

» Under exchangeability or mean exchangeability
ElY(2)|Z=0] =E[Y(2)|Z = 1] = E[Y(2)]
= |dentify the causal effect
E[lY()]—-E[Y(0)] =E[Y(1)|Z =1]—-E[Y(0)|Z=0] (mean) exchangeability

) B ~ _(rifz=1
=E[Y|Z=1]-E[Y|Z = 0] Y—{mmwz=0

= Under randomization, the observed mean difference is the causal mean difference
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Measurement of causal effect

» |ndividual causal effect Y(1) — Y (0)

= Average causal effect in a population is often of interest
- E[Y(1) -Y(0)] = E[Y(1)] - E[Y(0)]
— Population average (or marginal) effect: averaging (or marginalizing) over all
individual-level effects in the population

= Other causal effect measures for binary and count data
— Rate ratio: E[Y(1)]/E[Y(0)]

— QOdds ratio for binary data:

E[Y(1)] / E[Y(0)]
1-E[Y(D]" 1-E[Y(0)]
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Causal effect under conditional
exchangeability

= Stratified randomization to increase homogeneity within a stratum (e.g.,
stratification by smokers vs. non-smokers)
— Ensure the treated patients are “similar” to the control patients within a stratum

= Stratified randomization implies conditional exchangeability: Y(0),Y(1) 1L Z|X

= Conditional (mean) exchangeability within a stratum of X = x
ElYD|Z=0,X=x] =E[Y(2)|Z=1X = x]
— Mean of potential outcomes that would be observed with Z = z is the same among
those who actually got Z = 0 and those who got Z = 1, within the stratum of X = x
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Poll guestion 4

= \Which of the following methods are you familiar with?
— Generalized Linear Models
— LS Mean
— Standardization
— Inverse Probability Weighting
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Generalized Linear Models

» For a given model (e.g., GLM), there is a natural parameter of interest
— E.g., regression parameter £ of the treatment assignment

= \We know there are statistical estimation techniques (e.g., maximum likelihood)
to derive an unbiased estimator of the parameter in the model

= But we do not know if the parameter in the model is the parameter of interest
(or the summary measure) in the estimand

An approximate answer to the right question is worth a great deal
more than a precise answer to the wrong question.

John Tukey
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Poll question 5

62

Given the model fit: E[Y|Z,X] = g~ *{B, + $1Z + B, X}, itis natural to use the
regression coefficient 8; as an estimator of the estimand

— f; is usually called the conditional effect, conditioning on the covariate(s)

— Steingrimsson et al. (2017)

Which of the following models provide(s) a conditional effect (3;) that coincides
with the population average effect below (or target the estimand of interest)?

— Linear regression for E[Y(1)] — E[Y(0)]

.. . E[Y(1)] E[Y(0)]
— Logistic regression for ="~ / RO

— Poisson / Negative binomial regression for E[Y(1)]/E[Y (0)]

> NOVARTIS | Reimagining Medicine
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Poll guestion 5

63

Given the model fit: E[Y|Z, X] = g~Y{p, + B1Z + B, X}, itis natural to use the
regression coefficient 3; as an estimator of the estimand

— B, is usually called the conditional effect, conditioning on the covariate(s)

— Steingrimsson et al., 2017

Which of the following models provide(s) a conditional effect (£;) that coincides with
the population average effect below (or target the estimand of interest)?
— Linear regression for E[Y(1)] — E[Y(0)]: Yes
E[v(1)] / EVO] .\
1-E[Y(1)]’ 1-E[Y(0)]
— Poisson / Negative binomial regression for E[Y(1)]/E[Y(0)]: Yes

Different answers depend on the functional form of the link function
— See the following three slides for detailed explanation

— Logistic regression for
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Estimand of linear regression
coefficient

= Linear regression: g~ 1{-} =
ElYy(D)] - E[Y(0)] = - X, E[Y (DIX = x;] — = 3L, E[Y(0)1X = x]

= 251 (Bo + By + Boxi) = 531 (Bo + Boxi)

= By (Yes)
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Estimand of logistic regression
coefficient

= Logistic regression: g~1{-} =- exp(*)

p—) = expit(+)

B BV _ YR, ElY(D)x=x;] / Y, ElY(0)1x=x;]
1-E[Y() 1-E[¥(0)] ~ 1-13%, Elv(D)|x=x;]/ 1->3I%, E[¥(0)|X=x;]
1 Z? , expit(Bo+PB1+PB2x; L Y, expit(Bo+PB2x;)
- 1—— Xy exp1t(ﬁ0+ﬁ1+ﬁle)/1—— Xy expit(Bo+pB2x;)
+ exp fB; (NO)

» Note that if we plug in the mean of covariate X

E[y(1)|x=x] / E[v(0)|x=x] _  expit(Bo+B1+B.%) [ expit(Bo+pB,%)
1-E[y(1)|x=x]/ 1-E[v(0)|x=x]  1-expit(Bo+B1+B>%)/ 1—expit(Bo+B,%)
_ &Xp (Bo+B1+B2%)

exp (Bo+B2%)
= exp B; (i.e., conditional effect on the mean of covariate)

> NOVARTIS | Reimagining Medicine
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Estimands of Poisson/negative
binomial coefficient

= Poisson / Negative binomial regression: g~ *{-} = exp(+)
Ely(D)] _ 7 Ziq EY(D)1X=x;]
E[Y(0)] 3™ E[v(0)|X=x;]
. %Z?:l eXp(Bo+E1+E2xi)
23 exp(Bo+Bax;)

= exp f3; (Yes, under the following assumptions)

= Note that gggﬁ IS the ratio of rates assuming every patient would have the
same exposure (or offset)

= Also assume no Z by X interactions

> NOVARTIS | Reimagining Medicine
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Regulatory feedback on estimate of
causal effect

= A Phlll clinical trial comparing treatment against control

P1 Po
1-p1" 1-pg

* Primary estimand uses the marginal (population average) odds ratio
— p; and p, are response rates in treatment and control arms, respectively

* Primary analysis uses the logistic regression with covariates
— Regression coefficient as the estimate of the primary estimand

FDA: Estimand uses the marginal odds ratio but the logistic regression
uses the conditional odds ratio, which does not align with the estimand
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Poll guestion 6

= Given the model fit: E[Y|Z,X] = g~Y{f, + f1Z + B, X}, it is natural to use the
least squares mean as an estimate of the marginal mean E[Y (2)]
— LS mean plugs in the average of covariates E[Y|z, X = x] = g~*{B, + b1z + B}
— LS mean estimates the effect of a “special” patient with average values of covariates

= Which of the following models provide(s) an LS mean E[Y|z, X = x] that
coincides with the marginal mean E[Y (2)]?
— Linear regression
— Logistic regression
— Poisson / Negative binomial regression
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Poll question 6

= Given the model fit: E[Y|Z,X] = g~ B, + f1Z + B, X}, it is natural to use the
least squares mean as an estimate of the marginal mean E[Y (z)]
— LS mean plugs in the average of covariates E[Y|z, X = x] = g~*{B, + b1z + B}
— LS mean estimates the effect of a “special” patient with average values of covariates

= Which of the following models provide(s) an LS mean E[Y|z, X = x] that
coincides with the marginal mean E[Y (2)]?
— Linear regression: Yes
— Logistic regression: No
— Poisson / Negative binomial regression: No

= Again, different answers depend on the functional form of the link function
— See the following three slides for detailed explanation
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Estimand of linear regression LS mean

= Linear regression: g~ 1{-} =
E[Y(2)] = -3, E[Y (@)X = x,]
= L Za(Bo + B+ foi)
Bo + P1z + Box
E[Y|z, X = x] (Yes)
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Estimand of logistic regression LS
mean

= Logistic regression: g~{:} = e;;?gzl = expit(+)
1 ~
v = e V@I = %]
7)| =

123 EY @)X = x]
B %Z{;l expit(Bo+B12+B2x;)
 1-- 3 expit(Bo+B1z+B2xi)
+ expit(ﬁo + piz + Bzf)

= E[Y|z, X = ¥] (No)

» |nterpretation: LS mean estimates the effect of a “special” patient with average
values of covariates

> NOVARTIS | Reimagining Medicine
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Estimands of Poisson/negative
binomial regression LS mean

= Poisson / Negative binomial regressmn g} =exp(")

ElY(2)] = Z _EY(Ix =x

- EZ?=1 exp(Bo + B1 + Paxi)

# exp(fo + P1 + f2%)
= E[Y|z, X = x] (No)

= Interpretation: LS mean estimates the effect of a “special” patient with average
values of covariates
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Regulatory feedback on marginal
mean

= SIROCCO, a Pnlll trial to compare benralizumab to placebo for severe asthma

= Primary analysis uses standardization from negative binomial regression of the
number of exacerbations with covariates

FDA: The study SAP proposed the marginal standardization method in
calculating mean annual exacerbation rates.

FDA: We agree with the applicant’s proposal in that, in the negative
binomial regression setting, the marginal method more closely aligns
with the crude annual exacerbation rate, and as such, provides a more
appropriate covariate-adjusted summary within treatment groups.

https://www.fda.gov/media/110333/download
U NOVARTIS | Reimagining Medicine

73 Public



Standardization

» Regression analysis is a general approach to analyze randomized/non-
randomized data by adjusting for
— Stratification variables under stratified randomization
— Other categorical covariates to address chance imbalance
— Other covariates for efficiency of estimation

= How to find a valid estimate of the average causal effect given these covariate
adjustments?

» Standardization (standardized estimator) is a popular approach
1. Model fitting
2. Predicting
3. Averaging
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Step 1 In standardization:
Fit a regression model (e.g., GLM)

Treatment (Z) Covariates (X)

1

X1

Response (Y)
Y1

0

X2

Y2

| Regress Y over Z and X |

Model fit: E[Y|Z,X] = g~ By + B1Z + B, X}

75 Public

g{-}: the link function

Linear regression: identity link g{-} =:
Poisson or negative binomial
regression: log link g{-} = log(")
Logistic regression: logit link g{-} =
log(:)
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Step 2 In standardization:
Predict potential outcomes

All patients under z = 0

All patient under z = 1

Treatment Covariate Model fit: E'[Y|Z, X] — Treatment Covariate
=0 X A A A =1
- &4 g HPo + BiZ + B X} .
0 X1 1 X1
0 X2 lPredict ! T2
E[Y(O)IX = x1] = g7 {Bo + Bax1 } ElY(DIX =x;,]1 = g7 {Bo + B1 + B2x1}
[Y(O)|X = X,] [Y(1)|X = X5]

76 Public
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Step 3 In standardization:
Average over individual predictions

Potential response underz =10
E[Y(ONX =x] = g_l{ﬁo + Bzx1}
E[Y(ONX = x;]

Potential response under z =1
ElY(DIX =x;1]1 = g7 {Bo + B1 + Box1}
E[Y(1)|X = x;]

Averaging (marginalizing over covariates)
-~ 1 -~
Elv(0)] = -3, E[Y (01X = x;]

Averaging (marginalizing over covariates)
-~ 1 -~
E[lY(D] = - TLEY(D)X = x4]

Estimated population average causal treatment effect
ElY(D] - E[Y(0)]

77 Public
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Implementation of standardization

= SAS macro “Margins” fits the GLM or GEE model and estimates marginal
mean and population average treatment effects (i.e., difference in means)
— Compatible with GENMOD
— Use the delta method for confidence intervals, p-values
— https://support.sas.com/kb/63/038.html

= A general approach using bootstrap
— Create bootstrap datasets using SURVEYSELECT in SAS or boot in R
— Within each dataset, complete steps 1 (model fitting), 2 (predicting), 3 (averaging)
— Summarize over the bootstrap datasets for confidence intervals, p-values

> NOVARTIS | Reimagining Medicine
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Application

= A Phlll trial comparing treatment against control

* Primary endpoint
— Clinical responder (Y = 1) or non-responder (Y = 0)
— Logistic regression of Y on treatment and covariates

= Compare standardization vs conditional results from logistic regression
— Odds ratio
— Difference in probabilities
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Marginal mean

Marginal mean Method based on logistic regression  Mean (95% CI)

LS mean 0.19 (0.16, 0.22)

Control Standardization via Margins macro 0.23 (0.20, 0.26)
Standardization via bootstrap 0.23 (0.20, 0.26)

LS mean 0.51 (0.46, 0.56)

Treatment Standardization via Margins macro 0.56 (0.52, 0.61)
Standardization via bootstrap 0.56 (0.52, 0.61)

= Very close results between Margins macro and bootstrap

= Different results from LS mean estimates
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Treatment effect

Treatment effect Method based on logistic regression  Mean (95% CI)

P-value
Model estimate NA
Difference Standardization via Margins macro 0.33 (0.28, 0.39) <0.001
Standardization via bootstrap 0.33 (0.28, 0.39) <0.001
Model estimate 4.59 (3.52 5.99) <0.001
Odds ratio Standardization via Margins macro NA
Standardization via bootstrap 4.40 (3.39, 5.63) <0.001

= Very close results for difference between Margins macro and bootstrap

= Different results for odds ratio between model estimate and standardization
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Properties of standardization

= Standardization derives population averages on the outcome scale
— Coincides with the linear model estimator
— More interpretable for discrete outcomes
— Incorporates covariates for efficiency

= Standardization is more robust (than a regression model) to model misspecification
under randomization
— Consistent estimator even when the GLM is misspecified (e.g., wrong choice of covariates)

= Standardization provides flexible estimators for different effect measures
(difference, ratio, odds ratio etc.)

= More awareness on what estimands are targeted by common estimators
— Rosenblum and van der Laan (Int J Biostat, 2010) for GLM
— Hernan (Epidemiology, 2010) for hazard ratio
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When data or comparisons are not
randomized

84

Real-world data/evidence are often observational in nature

Even in randomized trials, intercurrent events may lead to comparisons of two
post-randomized groups

— E.g., protocol adherers may be different under treatment and control

— E.g., treatment switching is often based on patients’ post-randomized condition

Without randomization, (conditional) exchangeability may not hold

?Y(O), Y(1) 1 Z|X?

To address this, we need to make additional assumptions
— No unmeasured confounding
— Positivity
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No unmeasured confounding

Because of randomization, treated patients are “similar” to the control patients
— Similarity with respect to measured & unmeasured covariates
— And therefore also potential outcomes

Without randomization, we need to assume that we have measured all
possible covariates that affect both treatment assignment and outcome

— |.e. no unmeasured confounders

Given this assumption, (conditional) exchangeability holds with “appropriate” X
Y(0),Y(1) L Z|X

Given X (within strata of X), we believe the treatment assignment is “random”
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Positivity

= Positivity: P(Z = z|X = x) > 0 for everyone
— Patients always had the possibility to receive (or not) any treatment option
= Why needed?
— Apatient with P(Z = 1) = 1 implies there is no comparable patient who did not receive
treatment

— i.e. we know nothing about their potential outcome under the treatment they did not
receive

» Randomization implies positivity
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Standardization in non-randomized
studies

87

Standardization can still be used as described in the previous section even in
non-randomized studies

— As long as, there is no unmeasured confounding and positivity holds,

— And the regression model includes all confounders,

— And the model is correctly specified

In complex studies, correct model specification (E[Y]Z, X]) can be difficult

Inverse probability weighting is an alternative method that does not require the
correct model specification (E[Y|Z, X])
— But requires the correct model for weights
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Inverse probability weighting (IPW)

= Model the treatment assignment P(Z = z|X = x), i.e., propensity score

High propensity score Low propensity score
- ¥
More likely to receive the actual treatment Less likely to receive the actual treatment
¥ ¥
Many similar patients Few similar patients
- ¥
Over-represented (small weight) Under-represented (large weight)

= Weight inversely proportional to the propensity score « 1/P(Z = z|X = x)
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Step 1 in IPW:
Fit a propensity score model (e.g., logistic)

Treatment (Z) Covariates (X)

89 Public

1

X1

0

X2

A 4

| Regress Z over X

1

Model fit: P(Z = 1|1X) = g~ Y{B, + B, X}
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Step 2 In IPW.
Predict propensity score

Treatment (Z) Covariates (X)
1 x4 Model fit: P(Z = 1|X) = g~ *{B, + B, X}

0 Xy

Predict

Treatment (Z) Covariates (X) P(Z =1|X)
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Step 3 In IPW.:
Weighted regression of outcome'Y

Treatment Covariates P(Z =z|X) Weight

(Z) (X)

P(Z=1)
1 X1 p1 ~ _
P1 P(Z = z): proportion of
P(Z=0) patients who received z
0 ) 1-— [20) 1
— D2

Regress Y over Z, using P(Z = z)/P(Z = z|X) as weights

See slide 94 for other weights
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Application

A Phlll trial comparing treatment against control

Primary endpoint
— Clinical responder (Y = 1) or non-responder (Y = 0)
— Logistic regression of Y on treatment and covariates

Propensity score model
— Logistic regression of Z on covariates

Analysis model for IPW
— Weighted logistic regression of Y on treatment only
— Close to taking weighted means in each treatment group
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Marginal mean

Marginal mean Method based on logistic regression  Mean (95% CI)

LS mean
Control IPW
Standardization

LS mean
Treatment IPW
Standardization

0.19 (0.16, 0.22)
0.23 (0.20, 0.26)
0.23 (0.20, 0.26)

0.51 (0.46, 0.56)
0.58 (0.54, 0.63)
0.56 (0.52, 0.61)

= Similar results between IPW and standardization

= Different results from LS mean estimates
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Treatment effect

Treatment effect Method based on logistic regression  Mean (95% CI) P-value
Model estimate NA

Difference IPW 0.35(0.30, 0.41) <0.001

Standardization 0.33 (0.28, 0.39) <0.001

Model estimate 4.59 (3.52, 5.99) <0.001

Odds ratio IPW 4.68 (3.60, 6.12) <0.001

Standardization 4.40 (3.39, 5.63) <0.001

= Similar results for difference between IPW and standardization

» Different results for odds ratio
— Odds ratio is very sensitive to a small change in the marginal mean
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Properties of IPW

= Propensity score is a balancing score
— Independence between treatment and covariates given propensity score
— If conditional exchangeability holds for covariates X, it holds for propensity score P(Z = z|X)

= Propensity score model should include all possible (baseline) variables that could
affect treatment and outcome
— More important to derive weights that improve covariate balance than to predict treatment

= |PW targets the population average parameters, under the correct model

= Bootstrap is generally valid for inference of IPW
— Usually, stabilized weights are preferred: Pr(Z = z) / Pr(Z = z|X)
— Or truncated weights

= Propensity score has a broad use in weighting (for treatment, censoring etc.),
matching and stratification
— Need to check for positivity (overlap in propensity score)
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Conclusion

= Randomization allows identification of causal effects from observed data

= Without randomization or in the presence of post-randomized comparisons,
assumptions are needed to mimic a randomized setting

» Standardization is a robust and efficient approach under randomization

= With and without randomization
— Both standardization and IPW target the population average causal effect (or estimand)
— Their estimates could be different due to the used of different statistical models
— Standardization relies on an outcome model with covariates
— IPW models treatment assignment via a propensity score model with covariates

— Doubly-robust methods combine standardization and IPW and thus are more robust to
model misspecification

» |mportant to understand properties of estimators for a better alignment with
estimands
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Why do we need causal inference?

Provides a language to discuss causal effects (potential outcomes & DAGS)
— applies in observational and randomized data situations

Understand properties of estimators for a better alignment with estimands
— What estimand is the chosen estimator targeting?
— What are the assumptions underlying the estimator and how plausible are they?

Sheds new light on the understanding of some standard statistical practices
— LS means, interpretability of treatment effect parameters
— Some current standard practices might change

Will help implementing the ICH E9 addendum
— Adopts counterfactual viewpoint to define treatment effects
— Causal thinking & techniques apply to all intercurrent event strategies
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