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Why Covariate Adjustment for Clinical Trials?

Extensive literature on theory and methods for robust covariate adjustment; still

underutilized in current practice

Concerns and Responses:

• Unnecessary to adjust for imbalance in covariates due to randomization

Response: Better to. Leveraging covariates always improves efficiency

• Interested in marginal treatment effect, not adjusted/conditional treatment effect

Response: Will not change the estimand or the target

• Concerns about model misspecification

Response: No assumptions on correct modeling required. Robustness guaranteed

by randomization

Under the condition that covariate adjustment is carried out properly
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General Framework

Results are based on:

• Zhang, M., Tsiatis, A.A., Davidian, M. (2008). Improving efficiency of inferences in

randomized clinical trials using auxiliary covariates. Biometrics 64,707-715

– Study influence functions of all consistent and asymptotically normal estimators for

parameters quantifying treatment effect

– Provide a theoretical foundation and a general framework for covariate adjustment
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Notation

Data from a K-arm randomized trial:

(Yi, Xi, Zi), i = 1, ..., n,

• Yi: outcome of interest

• Xi: vector of auxiliary baseline covariates

• Zi = 1, ...,K : indicator of treatment group

• P (Z = g) = πg , g = 1, ...,K , and
∑K

g=1 πg = 1

• Z⊥⊥X , ensured by randomization

When K = 2:

• Ai = I(Zi = 2) = 0, 1: treatment indicator

• P (Ai = 1) = π: probability of receiving A = 1
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Estimand

Estimand: β, a vector of parameters for making treatment comparison

Examples:

• Continuous response: E(Y |Z) = β1 + β2I(Z = 2) + · · ·+ βKI(Z = K)

where β = (β1, β2, · · · , βK)T

• Binary response:

– Odds ratio: logit {P (Y = 1|A)} = β1 + β2A

– Risk difference: P (Y = 1|A) = β1 + β2A

– Relative risk: logP (Y = 1|A) = β1 + β2A

where β = (β1, β2)
T
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Estimand

• Continuous longitudinal response:

– E(Yij |Ai) = α+ {β1 + β2Ai}tij

where β = (β1, β2)
T ; γ = α

• Survival response:

– Hazards ratio: λ(t|A) = λ0(t) exp(βA)

– Difference in restricted mean lifetime by t

– Difference in survival probability at t
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Key Theoretical Results

• Result 1

The class of all unbiased estimating functions for θ based on (Y,X,Z) are:

m∗(Y,X,Z; θ) = m(Y, Z; θ)−

K∑

g=1

{I(Z = g)− πg}ag(X)

– m(Y, Z; θ) is any unbiased estimating function

– θ = (β, α): α other parameters estimated together with β

• Result 2

Given m(Y, Z; θ), the optimal choice of ag(X) is

E{m(Y, Z; θ) |X,Z = g}
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Key Theoretical Results

Two treatment groups: Ai = 0, 1

• Result 1

The class of all unbiased estimating functions for θ based on (Y,X,A) are:

m∗(Y,X,A; θ) = m(Y,A; θ)−(A− π)a(X)

where is m(Y,A; θ) is any unbiased estimating function, θ = (β, α): α other

parameters needed to be estimated together with β

• Result 2

Given m(Y,A; θ), the optimal choice of a(X) is

E{m(Y,A; θ) |X,A = 1} − E{m(Y,A; θ) |X,A = 0}
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Implementation: General Strategy

• Step 1: Obtain “unadjusted” estimator θ̂ by solving

n∑

i=1

m(Yi, Zi; θ) = 0

• Step 2: For each group g, treating m(Yi, g; θ̂) as data develop a regression model

E{m(Y, g; θ̂) |X,Z = g} = qg(X, ζg)

• Step 3: Obtain the “adjusted” estimator θ̃ by solving

n∑

i=1

[
m(Yi, Zi; θ)−

K∑

g=1

{I(Zi = g)− πg}qg(Xi, ζ̂g)

]
= 0

For K = 2, equivalently

n∑

i=1

[
m(Yi, Zi; θ)− (Ai − π){q1(Xi, ζ̂1)− q0(Xi, ζ̂0)}

]
= 0
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Implementation: General Strategy

Recommendations for step 2:

• Build regression models:

E{m(Y, g; θ̂) |X,Z = g} = qg(X, ζg) = {qg1(X, ζg1), . . . , qgr(X, ζgr)}
T

– Specify a linear regression model, including intercept and basis functions in X (eg,

polynomials terms in X , interaction terms, splines)

– Obtain estimates ζ̂g = (ζ̂Tg1, ..., ζ̂
T
gr)

T via OLS

– Guaranteed to be more efficient (unless covariates are not predictive at all)

• Neither validity nor efficiency gain require assumption of c orrect modeling

• In practice, often E{m(Y, Z; θ) = B(Z; θ){Y − f(Z; θ)}, equivalently, step 2

becomes modeling for E(Y |X,Z = g)

– Popular models for Y exist and can be used
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Implementation: Examples

K = 2

X∗: a vector including 1, X , and other basis functions of X

Difference in Mean/risk

• Unadjusted estimating equation
∑n

i=1 m(Yi, Ai;β) =
∑n

i=1

[
1−Ai

Ai

]
(Yi − β1 − β2Ai) = 0

• Build regression models for Y |X,A = a, a = 0, 1

– Continuous Y : E(Y |X,A = a) = ζaX
∗

– Alternatively for binary Y : logitP (Y = 1|X,A = a) = ζaX
∗

And obtain predicted value for Yi under each a, denoted by Ŷ a
i .

• Solve augmented estimating equation:
∑n

i=1

{[
1−Ai

Ai

]
(Yi − β1 − β2Ai)− (Ai − π̂)

[ −(Ŷ 0

i
−β1)

Ŷ 1

i
−β1−β2

]}
= 0
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Implementation: Examples

Log odds ratio when Y is binary

• Unadjusted estimating function
∑n

i=1 m(Yi, Zi;β) =
∑n

i=1

[
1−Ai

Ai

]
{Yi − expit(β1 + β2Ai)}

• Build regression models for Y |X,A = a, a = 0, 1

– logitP (Y = 1|X,A = a) = ζaX
∗

– Alternatively, E(Y |X,A = a) = ζaX
∗

And obtain predicted value for Yi under each a: Ŷ a
i .

• Solve augmented estimating equation:

n∑

i=1

{[
1−Ai

Ai

]
{Yi − expit(β1 + β2Ai)}

−(Ai − π̂)
[−{Ŷ 0

i
−expit(β1)}

Ŷ 1

i
−expit(β1+β2)

]}
= 0
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Implementation: Examples

Difference in slopes when Y is longitudinal

• Unadjusted analysis using SAS proc mixed

Yij = α+ (β1 + β2Ai)tij + b0i + b1itij + eij , where

(b0i, b1i) ∼ N(0, D), eij ∼ N(0, σ2
e) to obtain D̂, σ̂2

e for calculating V̂i

• – For simplicity fit E(Y |X,A = a) = ζaX
∗ using OLS

– Obtain predicted value for Yi = (Yi1, . . . , Yini
) under each a: Ŷ a

i

• Solve augmented estimating equation:

n∑

i=1

{[
1ni

, ti, Aiti
]T

V̂ −1
i {Yi − (1ni

, ti, Aiti)[
α
β1

β2

]}

−(Ai − π̂){Q1
i (Y

1
i − µ1

i )−Q0
i (Y

0
i − µ0

i )
}
= 0,

where Qa =
[
[1ni

, ti, ati]
T V̂ −1

i , µa = (1ni
, ti, ati)[

α
β1

β2

], a = 0, 1

Min Zhang (U of Michigan) 13/ 17 ASA-Biopharm 2020



Variance Estimator/Hypothesis Testing

• For making inference, one needs to estimate the variance of β̃ consistently

– Adjusted estimator β̃ is obtained by solving estimating equations

– By standard M estimation theory, the variance can consistently estimated by

sandwich variance estimator

• Within the same framework, on can derive robust, more powerful tests through

covariate adjustment

– Wald test based on adjusted β̃

– For example, covariate adjusted more powerful Wilcoxon-rank sum

test/Kruskal-Wallis
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Simulations

Estimate difference in slopes in a linear mixed model

Model: Yij = β0i + β1itij + eij , j = 1, . . . ,mi

Data generation:

• Baseline variables: 3 continuous variables

• Outcome:

− Subject-specific intercept: β0i = 0.5 + 0.2X1i + 0.5X2i + b0i

− Subject-specific slope: β1i = α0g + α1gX
2
1i + α2gX2i + α3gX3i + b1i,

for g = 1, 2

Methods:

• Aug 1: augmented method; augmentation term represents the true form

• Aug 3: augmented method; augmentation term involves quadratic term in X

• Usual: fit a linear mixed model adjusting for covariates
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Simulations

Estimate difference in slopes in a linear mixed model

Method True MC Bias MC SD Ave. SE Cov. Prob Rel. Eff.

Mild Association

Unadjusted 0.300 0.000 0.100 0.099 0.951 1.00

Aug. 1 0.300 -0.001 0.095 0.094 0.951 1.10

Aug. 3 0.300 -0.001 0.096 0.094 0.950 1.08

Moderate Association

Unadjusted 0.300 0.000 0.107 0.106 0.949 1.00

Aug. 1 0.300 -0.001 0.097 0.095 0.951 1.22

Aug. 3 0.300 -0.001 0.097 0.095 0.952 1.21

Strong Association

Unadjusted 0.300 0.000 0.116 0.115 0.950 1.00

Aug. 1 0.300 -0.001 0.098 0.096 0.951 1.41

Aug. 3 0.300 -0.001 0.098 0.096 0.951 1.39

Monte Carlo size = 5000, n = 200,mi ≈ 10
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Final Remarks

• Theory and a general framework in:

Zhang, M., Tsiatis, A.A., Davidian, M. (2008). Improving efficiency of inferences in randomized

clinical trials using auxiliary covariates. Biometrics 64,707-715

• Other methods and implementations are available in the literature, with influence functions

belonging to the class studied in Zhang, Tsiatis and Davidian (2008). Therefore, the general

statements regarding robustness and efficiency gain still apply

• Other work within the framework or based on similar augmentation ideas:

– Tsiatis, A.A., Davidian, M., Zhang, M., and Lu, X. (2008). Covariate adjustment for two-sample treatment comparisons in

randomized clinical trials. Statistics in Medicine 27, 4658-4677

– Lu, X. and Tsiatis, A.A. (2008). Improving the efficiency of the log-rank test using auxiliary covariates. Biometrika 95,

679-694

– Zhang, M. and Gilbert, B. P. (2010). Increasing the efficiency of prevention trials by incorporating baseline covariates.

Statistical Applications in Infectious Diseases. Vol. 2: Iss. 1, Article 1

– Zhang, M. (2015). Robust methods to improve efficiency and reduce bias due to chance imbalance in estimating survival

curves in randomized clinical trials. Lifetime Data Analysis, 21(1),119-137
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