
1/21

References

Improving Precision and Power in Randomized
Trials for COVID-19 Treatments Using Covariate

Adjustment, for Binary, Ordinal, and
Time-to-Event Outcomes

Michael Rosenblum
Associate Professor of Biostatistics

Johns Hopkins Bloomberg School of Public Health
Slides and paper at https://mrosenblumbiostat.wordpress.com

Co-authors: David Benkeser∗, Ivan Diaz∗, Alex Luedtke∗,
Jodi Segal and Daniel Scharfstein

Recently accepted at Biometrics (∗ = co-first authors)
https://doi.org/10.1111/biom.13377

Michael Rosenblum, Johns Hopkins University Leveraging Prognostic Baseline Variables in RCT



2/21

References

Motivation

Over 800 randomized clinical trials (phase 2 and 3) of
COVID-19 treatments registered on clinicaltrials.gov.

March 2020: Request by the U.S. Food and Drug
Administration (FDA) for statistical analysis recommendations
for COVID-19 treatment trials.

Primary outcomes in these trials often: binary, ordinal,
time-to-event.

We assessed potential value added by covariate adjustment by
simulating two-arm trials with 1:1 randomization comparing a
hypothetical COVID-19 treatment versus standard of care.

Simulated distributions derived from data on over 500
patients hospitalized at New York Presbyterian Hospital, and
a Centers for Disease Control and Prevention (CDC)
preliminary description of 2449 cases.

Submitted report in April, 2020, to FDA.
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Our Problem and Goals

Covariate adjustment in randomized trial:

Preplanned adjustment for baseline variables when estimating
average treatment effect in primary efficacy analysis.
Can improve precision and reduce required sample size to
achieve desired power.

Problem: Covariate adjustment often misunderstood and
underutilized, potentially wasting substantial resources,
particularly for trials with binary, ordinal, or time-to-event
outcome (common in COVID-19 treatment trials).

Our goals:

Describe estimands, covariate-adjusted estimators, and
implementation in R packages for these outcome types.
Use simulations based on real data to demonstrate impact of
covariate adjustment in hypothetical COVID-19 trials.
Practical recommendations for implementation
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Main Results

Substantial precision gains from using covariate
adjustment–equivalent to 4-18% reductions in required sample
size to achieve a desired power–for a variety of estimands
(targets of inference) for simulated trials with sample sizes
100, 200, 500, 1000.

We provide an R package and practical recommendations for
implementing covariate adjustment.

The estimators that we consider are robust to model
misspecification.

Benkeser, D., Diaz, I., Luedtke, A., Segal, J., Scharfstein, D., and
Rosenblum, M. (In Press) Improving Precision and Power in
Randomized Trials for COVID-19 Treatments Using Covariate
Adjustment, for Binary, Ordinal, or Time to Event Outcomes.
Biometrics. This paper was selected to be a discussion paper.
https://doi.org/10.1111/biom.13377

Michael Rosenblum, Johns Hopkins University Leveraging Prognostic Baseline Variables in RCT



5/21

References

Use of Covariate Adjustment in Randomized Trials: Two
Surveys

Pocock et al. (2002) surveyed 50 randomized clinical trial reports.
Findings: “The statistical emphasis on covariate adjustment is
quite complex and often poorly understood, and there remains
confusion as to what is an appropriate statistical strategy.”

Austin et al. (2010) surveyed 114 randomized trial articles.
Findings: only 39 presented an adjusted analysis.
Paper title: “A substantial and confusing variation exists in
handling of baseline covariates in randomized controlled trials: a
review of trials published in leading medical journals.”
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FDA Guidance Documents on Covariate Adjustment

1 ICH E9 Statistical Principles for Clinical Trials (1998):
“Pretrial deliberations should identify those covariates and
factors expected to have an important influence on the
primary variable(s), and should consider how to account for
these in the analysis to improve precision...”

2 FDA (2019): “Sponsors can use ANCOVA to adjust for
differences between treatment groups in relevant baseline
variables to improve the power of significance tests and the
precision of estimates of treatment effect”
(FDA draft guidance for continuous outcomes.)

3 FDA (2020) “To improve the precision of treatment effect
estimation and inference, sponsors should consider adjusting
for prespecified prognostic baseline covariates (e.g., age,
baseline severity, comorbidities) in the primary efficacy analysis
and should propose methods of covariate adjustment.” (FDA
Guidance on COVID-19 treatment and prevention trials)
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Goal of Covariate Adjustment

Population Average Treatment Effect is a contrast between
(marginal) outcome distributions if all were assigned to
treatment versus all assigned to control. (Intention To Treat)

Goal: Estimation of Average Treatment Effect in a
Randomized Trial.
If baseline variables prognostic for outcome, can improve
precision compared to unadjusted estimator.

Related work on covariate adjustment, e.g., Yang and Tsiatis,
2001, Zhang et al. 2008; Tsiatis et al. 2008, Rubin and van
der Laan, 2008, Zhang and Gilbert 2010, Moore et al. 2011,
Tian et al. 2012, Zheng et al. 2015, Vermuelen et al. 2015,
Wager et al. 2016, Zhang and Ma, 2019, Jiang et al. 2019.
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Population, Baseline Variables, and Outcomes in
COVID-19 context

Population: hospitalized, COVID-19 positive patients

Outcomes: intensive care unit (ICU) admission, intubation
with ventilation, and death.

Baseline variables: age, sex, required supplemental oxygen at
ED presentation, dyspnea, hypertension, bilateral infiltrates on
the chest x-ray
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Estimands (Targets of Inference)

Estimands (contrasts between marginal distributions under
treatment and control):

For binary outcomes: risk difference, relative risk, odds ratio.
For ordinal outcomes: difference in means, the Mann-Whitney
estimand=P(random individual assigned to treatment has
better outcome than random individual assigned to control
with ties broken at random), and average of cumulative log
odds ratios over outcome levels.
For time-to-event outcomes: difference in restricted mean
survival times, the difference in survival probabilities, and the
ratio of survival probabilities.

Estimators:

For each estimand, present a covariate adjusted estimator that
leverages information in baseline variables to improve precision
and reduce required sample size to achieve desired power.
For ordinal outcomes, novel covariate adjusted estimators.
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Data Generating Distributions for Simulations (Survival
Outcomes)

Patient data re-sampled with replacement from 500 patients
hospitalized at Weill Cornell Medicine New York Presbyterian
Hospital prior to March 28, 2020.

Simulated sample sizes n = 100, 200, 500, and 1000.

Hypothetical treatment variable drawn independent of all
other data

To simulate positive treatment effect: add independent draw
from a χ2 with 4 d.f. to each treatment arm participant’s
outcome

Censoring: 5% censored completely at random; censoring time
from uniform distribution on {1, . . . , 14}.
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Results: difference in restricted mean survival times
(RMST) 14 days after hospitalization

Table: Results when treatment effect is 1 day. n=sample size;
RE=relative efficiency (ratio of adjusted vs. unadj. MSE).

n Estimator Power MSE RE

100 Unadjusted 0.09 53.7 1.00
100 Adjusted 0.15 51.0 0.95

200 Unadjusted 0.33 62.7 1.00
200 Adjusted 0.40 56.4 0.90

500 Unadjusted 0.74 72.9 1.00
500 Adjusted 0.82 62.2 0.85

1000 Unadjusted 0.96 76.5 1.00
1000 Adjusted 0.98 63.5 0.83
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R Packages

Ordinal Outcomes: R package, drord,
https://github.com/benkeser/drord.

Survival Outcomes: R package survtmlerct

https://github.com/idiazst/survtmlerct
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Related work: Stratified Randomization and Covariate
Adjustment

Wang, B., Susukida, R., Mojtabai, R., Masoumeh, A.-E.; and
Rosenblum, M. (2019) Model-Robust Inference for Clinical Trials
that Improve Precision by Stratified Randomization and
Adjustment for Additional Baseline Variables.
https://arxiv.org/abs/1910.13954
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Recommendations for Primary Efficacy Analysis

1 Estimand when the outcome is ordinal. Recommend:
difference between means or the Mann-Whitney estimand.
Don’t recommend log odds ratios.

2 Covariate adjustment. Adjust for prognostic baseline
variables to improve precision and power.

1 Baseline variables should be specified before the trial is started
(or selected using prespecified algorithm, e.g., with
cross-validation).

3 Confidence intervals (CI) and hypothesis testing.
Nonparametric bootstrap (BCa), 10000 replicates for CI.

1 Entire estimation procedure repeated in each replicate data set.
2 Hypothesis tests: invert confidence interval or use permutation

methods (latter especially for smaller sample sizes)
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Recommendations for Primary Efficacy Analysis (con’t)

1 Use Information Monitoring
1 Final analysis time based on the information accrued

(1/estimator variance).
2 Precision gains from covariate adjustment translate into faster

information accrual and shorter trial duration.

2 Plotting the CDF and the probability mass function
(PMF) when the outcome is ordinal.

1 Covariate adjusted estimate of the PMF and/or CDF of
primary outcome plotted for each study arm.

2 Pointwise and simultaneous confidence intervals displayed

3 Missing covariates. Impute based only on data from those
covariates that were observed.

4 Missing outcomes. Use doubly robust methods and
sensitivity analyses of robustness to assumptions.
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