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Dual Criterion Decision Criteria
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(Lalonde et al. 2007)



The Criterion - Frequentist

LL UL
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Frequentist Decision Interval

Two “halves” of different one sided 1
2 confidence intervals glued

together, with one based on αLRV and the other on αTV .

(Chuang-Stein and Kirby 2017) denotes LPDAT with no reference



The Criterion - Bayesian

LL = CDF−1(αTRV) UL = CDF−1(1 − αTV)
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Bayesian Decision Interval

CDF is the cumulative distribution function of the posterior
distribution of µ.

Bayesian approach offers intuitive decision rules and eases
incorporation of external information.



Graphical Criteria - LRV is 0
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Decision criteria - LRV is 0

Frequentest:

I LL > LRV and UCI > TV, then Go.
I LL ≤ LRV and UCI > TV, then Pause.
I UCI ≤ TV, then Stop.

Bayesian:

I Prob(µ > LRV) > αTRV and Prob(µ > TV) > 1 − αTV , then
Go.

I Prob(µ > LRV) ≤ αTRV and Prob(µ > TV) > 1 − αTV , then
Pause.

I Prob(µ > TV) ≤ 1 − αTV , then Stop.



Aside - Assurance
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Assurance, or Average Power

1. Posterior
2. Power (ie phase 3 design) of some statistical test.

(Spiegelhalter and Freedman 1986), (O’Hagan, Stevens, and
Campbell 2005)



The Criterion - Assurance
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1. Assurance that statistical test will be successful in phase 3
meets some threshold.

2. Assurance that failing to reject greater than TV for some α)
meets some threshold.

If both 1 and 2 are met, go. If only 2 is met pause, and if 2 is not
met then stop. Suggested by Mark Heize, at CSL Behring.



Operating Characteristics - Conditional Probabilities
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Go/stop/Pause as
 function of Assumed Effect



Conditional Operating Characteristics - LRV = 0
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I Understand ahead of time what other information may drive a
decision when results are “Pause”

I Is “Pause” an opportunity for an adaptive sample size change?



Graphical Criteria - LRV = minimal TPP

LRV = TPP Minimum TV = TPP Stretch
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Conditional Operating Characteristics - LRV = min TPP

LRV TV
Estimate (Decision Interval)

R
es

ul
t

Decision
Aggressive Go
Go
Pause
Stop

LRV TV

LRV TV

LRV TV

LRV TV

300 400

100 200

0 2 4 0 2 4

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Delta

P
ro

ba
bi

lit
y

This requires large α for LRV, or huge effect. (Chuang-Stein et al.
2011)



Graphical Criteria - Considering 3 criteria
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Incorperating external information

Bayesian and Assurance versions could include prior information.

1. Used to reduce sample size in the context of decision rules -
historic information on comparator, prior elicitation, PK/PD
modeling, etc.(ref)

2. Temper your enthusiasm. Include pessimistic historic prior
based on benchmark probability of success.



Spike and Smear Prior for Benchmark POS
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(Chuang-Stein and Kirby 2017)



Unconditional operating characteristics
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Go/stop/Pause as
 function of Assumed Effect

Assurance can be used as unconditional operating characteristics of
the probability of Go, Pause and Stop. (Spiegelhalter and Freedman
1986)

Probability of Go conditional on No Go decision
Probability of Go conditional on a Go decision



Example unconditional operating characteristics

Truth

Decision Stop Pause Go Total

Go 0.10 0.03 0.22 0.34
Pause 0.08 0.01 0.04 0.13
Stop 0.44 0.03 0.06 0.52
Total 0.62 0.07 0.31 1.00

Probability of a True Go conditional on Go decision = 0.22
0.34 = 0.65



Caveat on Design

If focus is solely on operating characteristics, and limiting sample
size, teams may manipulate alphas.

The larger the α used for TV, the more confidence you will have in
meeting TV. The smaller the α used for LRV, the more confidence
you will have in the existance a treatment effect.



Optimizing Drug Development Process

Recent work examines optimizing sample size of phase 2 for overall
probability of success

I (Jiang 2011) From an Assurance standpoint
I (De Martini 2013) Looking at this for a long time, mostly

working in frequentist setting
I (Pulkstenis, Patra, and Zhang 2017) Does this in a Bayesian

framework for Lalonde framework

(Dmitrienko and Pulkstenis 2017)



Challenges of POC

Decision making does not make poor performing drugs perform
better!

1. Good decision making (Chuang-Stein and Kirby 2017)
2. Good design considering Decision Bias due to decision making

(Kirby et al. 2012)
3. Utility optimization over both 1 and 2. (Preussler, Kieser, and

Kirchner 2019)
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