Master Protocol in Pediatric Cancer Trials

Jingjing Ye, PhD BeiGene ASA Biopharmaceutical Regulatory/Industry Statistical Workshop 2020 Sep. 24, 2020

The presentation is based on the work while employed at FDA Disclaimer: The presentation represents the opinion of the presenters, and do not reflect the position of the U.S. Food and Drug Administration, nor BeiGene

Acknowledgement

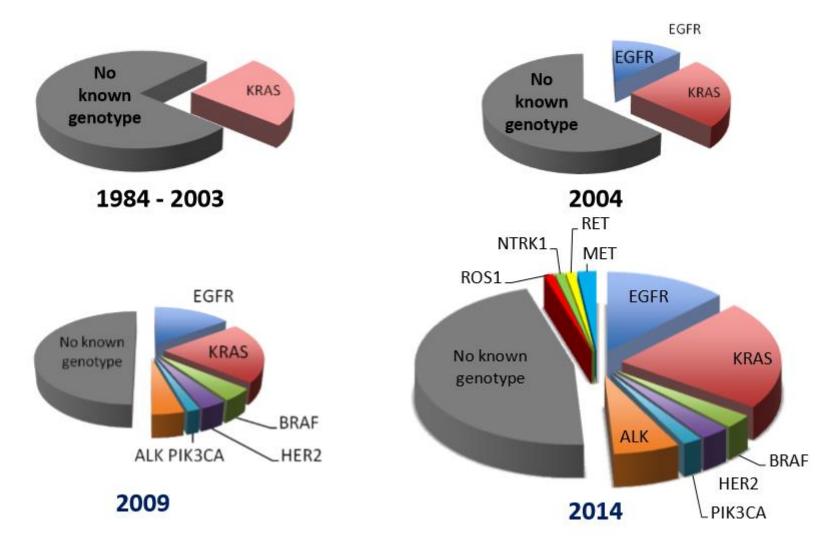
Gregory Reaman, OCE/FDA

Nita Seibel, NCI

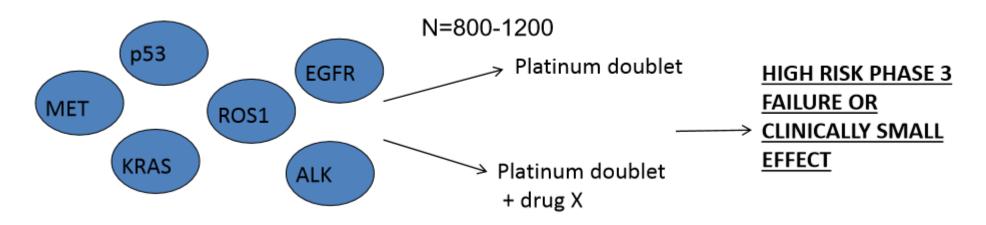
D. Will Parsons, NCI-COG, Baylor College of Medicine

Peter O'Dwyer, ECOG-ACRIN, Abramson Cancer Center, Upenn Peter Adamson, COG

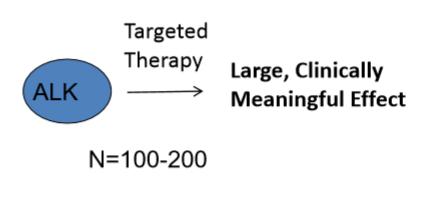
Slides courtesy from all


Outline

- Background
 - Precision Medicine and Pediatric Oncology Drug Development
 - Master Protocol Guidance
- NCI-COG Pediatric MATCH Design and Structure
- Challenges and Opportunities
- Summary


Precision Medicine and Oncology Drug Development

- Precision cancer medicine: targeted therapy selection by identifying key gene variants
- Evolutionary Paradigm shift: Human genome (2003) wide-spread availability of NGS
- Genomic and proteomic interrogation of individual cancers screened: resulted in creation of multiple rare subsets (defined by molecular phenotype) of previously common cancers


Evolution of Identification of Genomic Alterations in Lung Adenocarcinoma

Challenges with "Old Paradigm"

Challenges with "New Paradigm"

- 1% Prevalence of even common tumors: Number needed to screen > 100 patients→ need to reduce screen failure rate
- 1 drug/ 1 biomarker per trial unsustainable → Need common multianalyte platform(s)
- Need Rapid Learning/ Failure/ Confirmation

6

Precision Medicine in Pediatric Oncology

- Most childhood cancers (embryonal origin) low mutation frequency
- Initial therapy (H.D. chemo/XRT)
- Some childhood cancers have very few recurrent events
- Post-therapy sequencing of relapse samples accumulate more mutations in targetable oncogenic pathways
- Few opportunities for extrapolation: 5 out of 40 written requests in 2001-2019*

*A review of the experience with pediatric written requests issued for oncology drug products, submitted and under review

Characteristics of an Ideal Master Protocol

- One protocol
- Central governance structure
- Central IRB
- Central DMC
- Central Independent Review
 Committee
- Central repository of Data and Specimens
- Central screening platform

- Study multiple drugs
 - Targeting more than one marker
 - More than one drug for one marker
- Study multiple markers
 - Overlapping expression of markers
- Leverage common control
- Flexibility to add/remove agents (Adaptive)

Background: NCI-MATCH – Genomically-Driven Trial 2013

A Disease Agnostic Basket Trial: NCI-MATCH

THIS PRECISION MEDICINE TRIAL EXPLORES TREATING PATIENTS BASED ON THE MOLECULAR PROFILES OF THEIR TUMORS

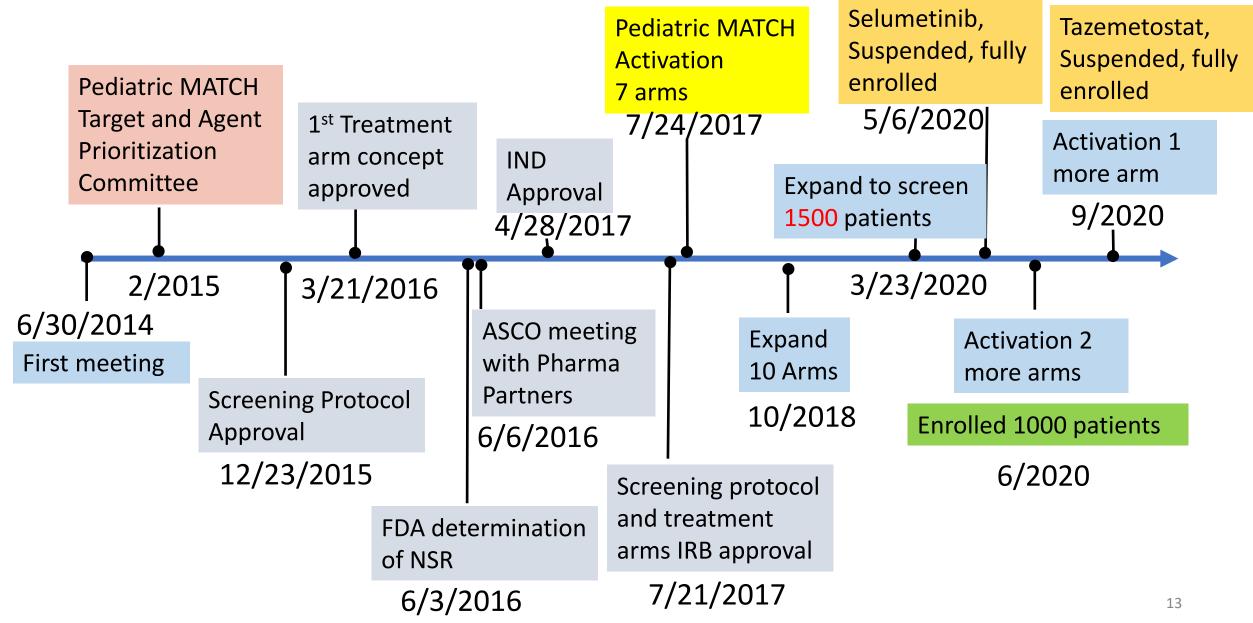
NCI-MATCH' IS FOR ADULTS WITH:

- solid tumors (including rare tumors), lymphomas, and myeloma
- tumors that no longer respond to standard treatment

05/27/2018 6

NCI-COG Pediatric MATCH Trial

- Funded by NCI
- Developed jointly by NCI and Children's Oncology Group (COG)
- Conducted by COG
- Refractory and recurrent pediatric Solid tumor, including non-Hodgkins lymphomas and CNS tumors or histiocytosis
- Goal: deliver targeted anticancer therapy that produces a clinically meaningful objective response rate


NCI-COG Pediatric MATCH Master Protocol

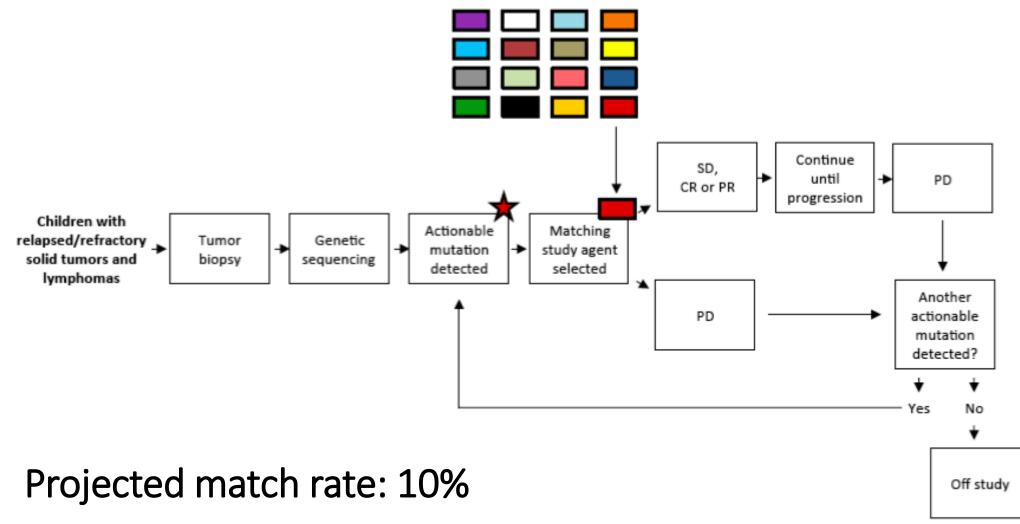
- Single IND held by CTEP
- Central Governance Structure
- NCI Pediatric Central IRB
- Master Protocol review by CIRB, each marker-drug subprotocol
- Central DMC by COG
- Central screening platform, leverage Adult MATCH trial
- Central Repository of data and specimen

NCI-COG Pediatric MATCH Design Features

- Non-histology driven
- Test many children and adolescents to find widely distributed genetic alterations
- Biopsies from the time of recurrence except for DIPG (from dx)
- Single stage Phase 2 studies
- Inclusion of agents with adult RP2D, without formal pediatric phase I testing
- Blood sample acquisition and return of germline sequencing results related to inherited cancer susceptibility

NCI-COG Pediatric MATCH Timeline

Level of Evidence for Drugs


- <u>Level 1</u>: FDA approved for any indication for that target
- <u>Level 2</u>: Agent met a clinical endpoint (objective response, PFS or OS) with evidence of target inhibition
- <u>Level 3</u>: Agent demonstrated evidence of clinical activity with evidence of target inhibition at some level

Level of Evidence for Target Selection

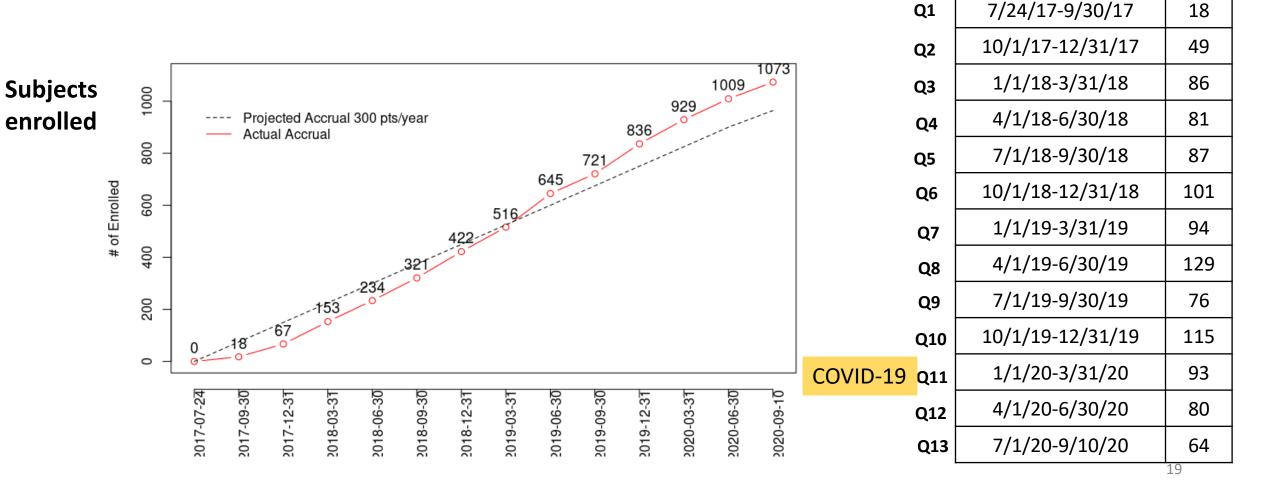
- <u>Level 1</u>: Gene variant credentialed for selection of an approved drug
- <u>Level 2a</u>: Variant is eligibility criteria for an ongoing clinical trial for that drug
- Level 2b: Variant identified in an N of 1 response (s)
- Level 3: Preclinical inferential data
 - Models with variant response; without variant do not
 - Gain of function mutation demonstrated in preclinical model
 - Loss of function (tumor suppressor genes or pathway inhibitor e.g. NF1); stop codon or demonstrated loss of function in preclinical model

NCI-COG Pediatric MATCH Schema

Available MATCH study agents

Later re-match can occur at physician's request (if slots are available)

Study Designs and Statistical Consideration


- Primary endpoint: Objective Response Rate
- Secondary endpoint:
 - Progression-free survival (PFS)
 - Tolerability
 - PK: erdafitinib, ensartinib, LY3023414, ivosidenib, ulixertinib
- Simon's 2-stage Design, no interim stopping
- Evaluation per arm: ORR and DOR, PFS
- No cross-arm comparison or pooling
- N=20/arm

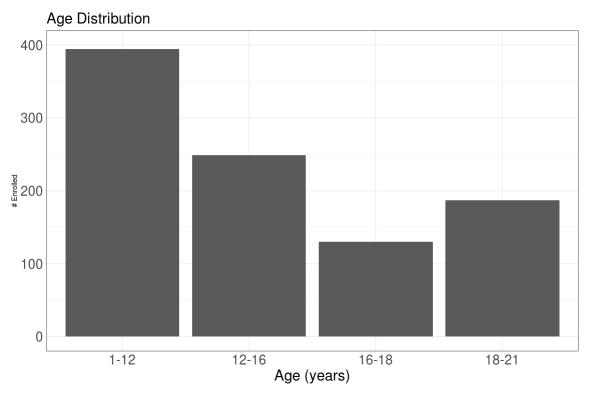
Treatment Subprotocol Status

Protocol ID	Agent	Agent Class	aMOI Frequency	Activation Date	Current Status	Adult Approval
APEC1621-A	Larotrectinib	TRK inhibitor	2-3%	7/24/2017	Recruiting	11/26/2018
APEC 1621-B	Erdafitinib	FGFR inhibitor	2-3%	11/06/2017	Recruiting	4/12/2019
APEC 1621-C	Tazemetostat	EZH2 inhibitor	2-3%	7/24/2017	Suspended, full enrollment – Planned analysis	1/23/2020
APEC 1621-D	LY3023414	PI3K/mTOR inhibitor	5-10%	7/31/2017	Recruiting	
APEC 1621-E	Selumetinib	MEK inhibitor	10-20%	7/24/2017	Suspended, full enrollment – Planned analysis	4/10/2020
APEC 1621-F	Ensartinib	ALK inhibitor	2-3%	7/24/2017	Recruiting	
APEC 1621-G	Vemurafenib	BRAF inhibitor	5%	7/24/2017	Recruiting	8/17/2011
APEC 1621-H	Olaparib	PARP inhibitor	2-3%	7/24/2017	Recruiting	12/19/2014
APEC 1621-I	Palbociclib	CDK4/6 inhibitor	2-3%	6/25/2018	Recruiting	2/3/2015
APEC1621-J	Ulixertinib	ERK1/2 inhibitor	5-10%	10/01/2018	Recruiting	
APEC1621-K	Ivosidenib	IDH1 Inhibitor	1-2%	6/08/2020	Recruiting	7/20/2018
APEC1621-M	Tipifarnib	HRAS Inhibitor	1-3%	7/13/2020	Recruiting	
APEC1621-N	Selpercatinib	RET inhibitor	1-2%	9/14/2020	Recruiting	5/8/2020 ₁₈

Screening Protocol Enrollment

 1074 patients from 100 COG sites enrolled between 7/24/2017 and 9/10/2020 Dates

Ν


18

Screening Protocol Enrollment (as of 4/30/2020)

• Patient age

- Age range 1 to 21 years (median = 13)
- 59% of patients from 12-21 years

Patients enrolled

Patient sex, race, ethnicity

Gender	Number (%)		
Male	553(58)		
Female	407 (42)		
Racial			
White	657(68)		
Black	134 (14)		
Asian	38 (4)		
American Indian/Alaskan Native	3 (0.3)		
Multiple	15 (2)		
Unknown/not reported	105 (11)		

Regulatory Agency Discussion in NCI-COG Pediatric MATCH

- Discussion initiated early in the development
- Under one new IND: subprotocol reviewed by different division based on disease
- Alignment on biomarker-driven targeted therapies
- Alignment on testing in pediatric when toxicity acceptable
- Alignment on starting dosing once RP2D in adult determined
- Evaluation by arm
- No IDE required reviewed as Adult MATCH trial

Challenges and Opportunities

- Existing clinical trial infrastructure
- Abundance of targeted agents
- Biopsy requirement for eligibility
- Evolving standard of care and comparator selection
- Combinations
- Safety oversight and monitoring

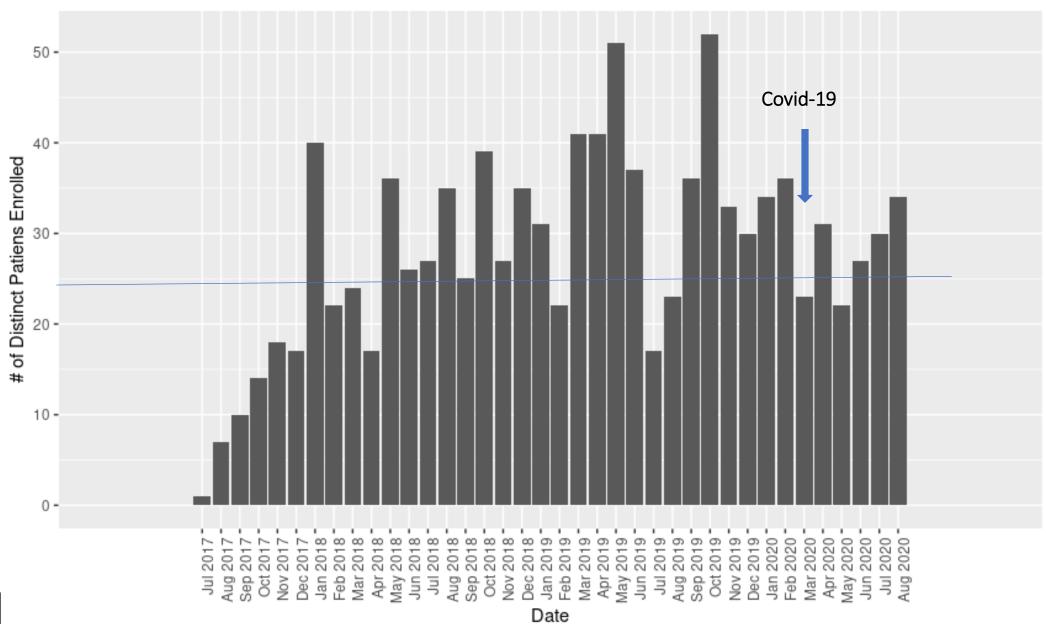
Summary

- NCI-COG Pediatric MATCH: collaborative framework for efficient collection, processing and sequencing of refractory pediatric cancers
- ~25% of study patients with tumor submitted assigned to a treatment arm, with 40% enrolled on the trials
- Ability to evaluate a wide spectrum of childhood cancers (from common to ultra-rare)

Summary

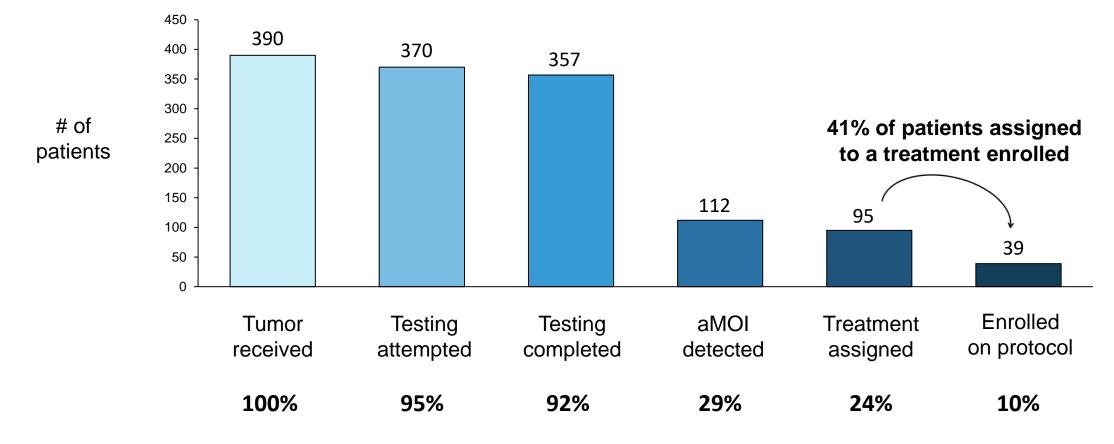
- Master protocols expand the promise of Precision Oncology to children
- Efficient mechanism for evaluating novel agents (dosefinding and activity screening)
- Biomarker-driven tissue agnostic cancer drug development strategies must include children
- Early communication with both CDER and CDRH on study design and research use of IVDs and IDE

References


- FDA draft guidance: Master Protocols: Efficient Clinical Trial Design Strategies to Expedite Development of Oncology Drugs and Biologics, 2018
- Vo, K.T., Parsons, W., Seibel, N.L., (2020) Precision Medicine in Pediatric Oncology, Surg Oncol Clin N Am 29: 63-72.
- Allen, C.E., et al. (2017) Target and Agent Prioritization for the Children's Oncology Group-National Cancer Institute Pediatric MATCH Trial, *JNCI*, 109 (5): djw274.
- Parsons, et al. (2019) Identification of targetable alterations in the NCI-COG Pediatric MATCH trial, *Journal of Clinical Oncology* 37, no. 15_suppl (May 20, 2019) 10011-10011, ASCO abstract 10011 and presentation
- Adamson, P.C., Parsons, D.W., Seibel, N., (2017), NCI-COG Pediatric MATCH Study, Accelerate Platform 5th Accelerate Paediatric Oncology Conference, <u>https://www.accelerate-platform.org/wp-content/uploads/sites/4/2017/03/17-Adamson.pdf</u>
- Mody, R.J., et al. (2015) Integrative clinical sequencing in the management of refractory or relapsed cancer in youth, JAMA, 314 (9): 913-925.

References (Cont'd)

- Reaman, G, Master Protocols in Pediatric Oncology: Access to Precision Medicine, Pediatric Master Protocols, FDA-University of Maryland CERSI Co-sponsored Workshop, Sep. 23, 2016
- Harris, M.H., et al. (2016) Multicenter Feasibility Study of Tumor Molecular Profiling to Inform Therapeutic Decisions in Advanced Pediatric Solid Tumors, The individualized cancer therapy (iCat) study, JAMA Oncology, 2(5): 608-615.
- Flaherty, K.T., et al. (2020) The molecular analysis for therapy choice (NCI-MATCH) trial: lessons for genomic trial design, JNCI, doi: 10.1093/jnci/djz245
- Parsons, D.W., et al. (2016) Diagnostic yield of clinical tumor and germline wholeexome sequencing for children with solid tumors, JAMA Oncology, 2(5): 616-624
- O'Dwyer, P.J., (2019) The Evolution of NCI-MATCH: What's next for SWOG and the NCTN, Spring 2019 SWOG Group Meeting, San Francisco, CA, Apr. 24-27, 2019


Back-up

Pediatric MATCH Enrollment

Tumor testing and matching (as of ASCO2019)

- Tumor sample was received for 390/422 (92%) enrolled patients, as of 12/31/2018
- Tumor sample was received for 909/960 (95%) enrolled patients, as of 4/30/2020

Median turnaround time (tumor receipt to assignment): 15 days

Subprotocol matching and enrollment

- 95 of 390 (24%) with tumor submitted had at least one match assigned
- 39 of 390 (10%) with tumor submitted enrolled on treatment subprotocol

Protocol ID	Agent	Matched	Enrolled	Enrolled (%)
APEC1621-A	Larotrectinib	3	3	100%
APEC1621-B	Erdafitinib	4	2	50%
APEC1621-C	Tazemetostat	9	4	44%
APEC1621-D	LY3023414	13	4	31%
APEC1621-E	Selumetinib	31	11	35%
APEC1621-F	Ensartinib	8	3	38%
APEC1621-G	Vemurafenib	7	3	43%
APEC1621-H	Olaparib	11	4	36%
APEC1621-I	Palbociclib	8	2	25%
APEC1621-J	Ulixertinib	1	0	0%

Data shown for highest priority match only (n=95); Treatment subprotocol enrollment as of 12/31/18