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Disclaimer
This presentation reflects the views of the authors
and should not be construed to represent FDA’s
views or policies.
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Outline
• Introduction to HAP Studies
• Statistical Modeling Procedure
• Key Questions
• Simulations
• Discussion
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Human Abuse Potential (HAP) Study
• A human abuse potential (HAP) study is a type of early phase clinical study.

• It evaluates whether or the magnitude of a drug produces subjective abuse-
related responses through the drug effects on the human central nerve
system (CNS).

• It assesses abuse potential in individuals with a history of recreational use of
drugs of abuse.

• Important tools to assess the subjective drug effects include Visual Analogue
Scales (VAS) of drug liking, take drug again, good/bad drug effects, etc.
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Design of a HAP study
Screening

Qualification 
Phase

Treatment 
Phase

Follow-up

Eligible Subjects Y/N?

Eligible Subjects Y/N?
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Design of a HAP study
• Treatment phase usually include placebo (P), positive control (C)

and different doses of test drug (T).
• Typically it is a randomized, double-blinded crossover study with

balanced William Square Design.
• Sample size is usually 30 ~ 50.
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Hypotheses Testing (FDA 2017 Guidance)
1. Validation test of the sensitivity and integrity of the study: Does the positive control (C) produce

mean responses that show greater abuse potential compared to placebo (P)? Thus, the
hypothesis should be tested as following:

𝐻𝐻0: 𝜇𝜇𝐶𝐶 − 𝜇𝜇𝑃𝑃 ≤ 𝛿𝛿1 versus   𝐻𝐻𝑎𝑎: 𝜇𝜇𝐶𝐶 − 𝜇𝜇𝑃𝑃 > 𝛿𝛿1 where   𝛿𝛿1 > 0

Typically 𝛿𝛿1 = 15 for Drug Liking Emax.

2. Does the test drug (T) produce mean responses that show less abuse potential compared to
positive control?

𝐻𝐻0: 𝜇𝜇𝐶𝐶 − 𝜇𝜇𝑇𝑇 ≤ 𝛿𝛿2 versus   𝐻𝐻𝑎𝑎: 𝜇𝜇𝐶𝐶−𝜇𝜇𝑇𝑇 > 𝛿𝛿2 where   𝛿𝛿2 ≥ 0

3. Does the test drug produce mean responses that show similar abuse potential compared to
placebo?

𝐻𝐻0: 𝜇𝜇𝑇𝑇 − 𝜇𝜇𝑃𝑃 ≥ 𝛿𝛿3 versus   𝐻𝐻𝑎𝑎: 𝜇𝜇𝑇𝑇 − 𝜇𝜇𝑃𝑃 < 𝛿𝛿3 where   𝛿𝛿3 > 0

Usually 𝛿𝛿3 = 11 for Drug Liking Emax.
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Statistical Modeling in HAP Studies
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Linear Mixed-Effects Model (LMM)

(Y) Use LMM (N) Investigate Pairwise Differences

(Y) Use paired t-test (N) Use Sign test

Check Normality Assumption 
and Skewness (Y/N)

Check Normality Assumption 
(Y/N)
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Statistical Analyses in HAP Studies
• The statistical model that should be used in HAP studies is a linear mixed-effects model, which includes

period, sequence, treatment, and first-order carryover effect as fixed effects, and subject as a random
effect.

• Assumptions for linear mixed model:
– Linear relationship between response and explanatory variables.
– Homogeneity of variance.
– The model errors (aka conditional residuals) are independent and normally distributed. 
– The random effects are normally distributed.
– The random effects and model errors should also be independent of each other.

• The normality assumption should be investigated using Shapiro-Wilk W-test.

• The impact of error term distribution is our main focus in this research
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Statistical Modeling in HAP Studies
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Linear Mixed-Effects Model (LMM)

(Y) Use LMM (N) Investigate Pairwise Differences

(Y) Use paired t-test (N) Use Sign test

Check Normality Assumption 
and Skewness (Y/N)

Check Normality Assumption 
(Y/N)
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Key Questions
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Is the current practice the best approach?

Linear Mixed-
Effects Model

Paired t-test

Is Normality 
Assumption 
Necessary?
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Linear Mixed-Effects Model in HAP Study
In matrix formulation,

𝑌𝑌 = 𝑋𝑋𝑋𝑋 + 𝑍𝑍𝑍𝑍 + 𝜖𝜖

𝑌𝑌 : (3𝑚𝑚 × 1) vector of response variables
𝑋𝑋: (3𝑚𝑚 × 3) design matrix for fixed effects
𝑋𝑋: (3 × 1) vector of fixed effects (treatments), indicates Positive Control, Test Drug, and Placebo
respectively
𝑍𝑍: (3𝑚𝑚 × 𝑚𝑚) design matrix for random effects
𝑍𝑍: (𝑚𝑚 × 1) vector of random effect (subjects), 𝑍𝑍 ∼ 𝑁𝑁𝑚𝑚 0,𝐺𝐺 , 𝐺𝐺 = 𝜎𝜎𝑢𝑢2𝐼𝐼𝑚𝑚
𝜖𝜖: (3𝑚𝑚 × 1) vector of within-subject error term, 𝜖𝜖 ∼ 𝑁𝑁3𝑚𝑚 0,𝑅𝑅 , 𝑅𝑅 = 𝐼𝐼𝑚𝑚 ⊗ 𝑅𝑅𝑖𝑖

𝑅𝑅𝑖𝑖 =
𝜎𝜎𝑒𝑒1
2 0 0

0 𝜎𝜎𝑒𝑒2
2 0

0 0 𝜎𝜎𝑒𝑒3
2
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Impact of Normal Assumption
• Weighted least square estimates (weighted LSE) for fixed effects:

�𝑋𝑋 = 𝑋𝑋𝑇𝑇 �𝑉𝑉−1𝑋𝑋 −1𝑋𝑋𝑇𝑇 �𝑉𝑉−1𝑌𝑌,
which is identical to the maximum likelihood estimates (MLE), 𝑉𝑉 = 𝑍𝑍𝐺𝐺𝑍𝑍𝑇𝑇 + 𝑅𝑅.
The unbiasedness of �𝜷𝜷 requires only the assumption of 𝑬𝑬 𝒀𝒀 = 𝑿𝑿𝜷𝜷, even if the assumptions
about random effects and residuals are inappropriate.

• The variance of �𝑋𝑋 is estimated by:

𝑉𝑉𝑉𝑉𝑉𝑉 �𝑋𝑋 = 𝑋𝑋𝑇𝑇 �𝑉𝑉−1𝑋𝑋 −1
.

The MLE estimation of �𝑽𝑽 has no closed form and has to be estimated iteratively, its convergence
relies on correct specification of the covariance structure and the normality assumption is
needed for its correct estimation. Hence, normality assumptions are needed for inference on
the test of fixed effects.
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Impact of Normal Assumption
𝑌𝑌 = 𝑋𝑋𝑋𝑋 + 𝑍𝑍𝑍𝑍 + 𝜖𝜖

• The unbiasedness of �̂�𝑋 is not affected by the normality of error term 𝜖𝜖.
• The estimate of 𝑉𝑉𝑉𝑉𝑉𝑉 �̂�𝑋 is affected by distribution of 𝜖𝜖 and the covariance structure. 

Deviation from normal may affect the inference.
• In a HAP study, the hypothesis testing is for the mean difference (estimated by LS 

mean) between treatment groups based on 𝑡𝑡 statistics: 𝑀𝑀𝑒𝑒𝑎𝑎𝑀𝑀𝑀𝑀 𝑡𝑡𝑡𝑡𝑡𝑡1 −𝑀𝑀𝑒𝑒𝑎𝑎𝑀𝑀𝑀𝑀(𝑡𝑡𝑡𝑡𝑡𝑡2)
𝑆𝑆𝑆𝑆[𝑀𝑀𝑒𝑒𝑎𝑎𝑀𝑀𝑀𝑀 𝑡𝑡𝑡𝑡𝑡𝑡1 −𝑀𝑀𝑒𝑒𝑎𝑎𝑀𝑀𝑀𝑀 𝑡𝑡𝑡𝑡𝑡𝑡2 ]

. 

The numerator is estimated from �̂�𝑋 , while the denominator is related to 𝑉𝑉𝑉𝑉𝑉𝑉 �̂�𝑋 , 
thus the 𝑡𝑡 statistic is affected by the normality of error term 𝜖𝜖. 

• The asymptotic property may not fully apply for such sample size.
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Simulation Settings
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• All the parameters used are based on typical HAP studies we reviewed

• Simulation of a hypothetical study: A 3-way crossover study with 36 subjects

 Fixed effects (3 treatments):
o Positive Control (C): mean = 65
o Test Drug (T): mean = 61
o Placebo (P): mean = 50

 Random effects (subjects): 𝑍𝑍𝑖𝑖 ∼ 𝑁𝑁 0, 7
 The model error 𝜖𝜖 was simulated from various distributions, and scaled to have

mean 0 and standard deviations 𝜎𝜎𝑒𝑒1 = 15, 𝜎𝜎𝑒𝑒2 = 10, 𝜎𝜎𝑒𝑒3 = 5 for Positive Control,
Test Drug, and Placebo respectively
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Simulation Settings

www.fda.gov

 The model error 𝜖𝜖 was simulated from various distributions, and scaled to have
mean 0 and standard deviations 𝜎𝜎𝑒𝑒1 = 15, 𝜎𝜎𝑒𝑒2 = 10, 𝜎𝜎𝑒𝑒3 = 5 for Positive Control,
Test Drug, and Placebo respectively

o Normal
o Log-Normal with skewness from 0.4 to 8
o - Log-Normal with skewness = -8
o 𝑡𝑡5
o Exponential(1), skewness around 2
o 𝜒𝜒32, skewness = 1.63; 

𝜒𝜒52, skewness = 1.26; 
𝜒𝜒102 , skewness = 0.89

o Weibull(1, 0.6), skewness = 4.6; 
Weibull(1, 1), skewness = 2; 
Weibull(1, 1.5), skewness = 1.07; 
Weibull(1, 3.6), skewness = 0; 
Weibull(1, 10), skewness = -0.64; 
Weibull(1, 100), skewness = -1.08

• Other distributions include bi-model and 
Laplace
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Simulation Procedure
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• For each simulated dataset, fit a linear mixed-effects model to the response with
treatments as fixed effects and subjects as random effects.

• Calculate the 𝑡𝑡 test statistic for each paired treatment difference, and determine
whether the null hypothesis is rejected or not by comparing the test statistic with
critical value:
o C – P: the difference between positive control and placebo, upper-tail test with test value of 15
o C – T: the difference between positive control and test drug, upper-tail test with test value of 4
o T – P: the difference between test drug and placebo, lower-tail test with test value of 11

• Repeat the data simulation and hypotheses testing procedures for 10,000 times, and
calculate the percentage of rejections among 10,000 simulations, indicating type I
error rate.
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Simulation Results
Linear mixed-effects model, 𝛼𝛼 = 0.05,𝑛𝑛 = 36

Error Distribution Actual Skewness 
(overall residuals)

Actual Skewness 
(C-P difference of residuals)

Type I error rate
(C-P)

Actual Skewness 
(T-P difference of residuals)

Type I error rate
(T-P)

Normal -0.003 -0.002 0.050 0.005 0.051

𝒕𝒕𝟓𝟓 -0.018 -0.023 0.053 -0.038 0.053

Weibull(1, 2.5) 0.429 0.288 0.046 0.230 0.054

Log-Normal 0.603 0.413 0.044 0.305 0.058

Log-Normal 0.942 0.658 0.040 0.483 0.061

Weibull(1, 1.5) 1.266 0.888 0.037 0.675 0.064

Chi-square(3) 1.959 1.330 0.034 1.017 0.068

Exp(1) 2.443 1.584 0.029 1.252 0.075

Weibull(1, 0.6) 5.653 3.616 0.016 2.659 0.105

Log-Normal 9.295 6.035 0.015 4.595 0.107

Weibull(1, 6) -0.456 -0.298 0.057 -0.229 0.046

Weibull(1, 10) -0.753 -0.508 0.061 -0.398 0.044

Weibull(1, 100) -1.286 -0.901 0.069 -0.691 0.041

-Log-Normal -8.203 -5.401 0.138 -4.184 0.021
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Treatment Error Distribution Skewness Actual Skewness 
(overall residuals)

Actual Skewness 
(C-P difference of residuals)

Type I error rate 
(C-P)

C Weibull(1, 10) -0.64
-0.043 -0.544 0.060T Weibull(1, 1) 2

P Normal 0

Check distribution of overall residuals or difference of paired residuals? 𝛼𝛼 = 0.05,𝑛𝑛 = 36
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Treatment Error Distribution Skewness Actual Skewness 
(overall residuals)

Actual Skewness 
(C-P difference of residuals)

Type I error rate 
(C-P)

C Weibull(1, 10) -0.64
-0.043 -0.544 0.060T Weibull(1, 1) 2

P Normal 0

C Weibull(1, 2.5) 0.36
0.336 0.605 0.042T Log-Normal_0.8 0.8

P -Log-Normal_8 -8

C Weibull(1, 6) -0.37
0.962 -0.372 0.057T Weibull(1, 0.6) 4.6

P Log-Normal_2 2

C Weibull(1, 10) -1.08
-0.726 -0.936 0.068T Log-Normal_0.8 0.8

P Log-Normal_0.5 0.5

C Chi-square(3) 1.63
-2.777 1.392 0.035T -Log-Normal_8 -8

P 𝒕𝒕𝟓𝟓 0

Check distribution of overall residuals or difference of paired residuals? 𝛼𝛼 = 0.05,𝑛𝑛 = 36
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Simulation Results
Paired t-test, 𝛼𝛼 = 0.05,𝑛𝑛 = 36

Error Distribution Actual Skewness 
(C-P)

Type I error rate (C-P)
(with Bootstrapping*)

Actual Skewness
(T-P)

Type I error rate (T-P)
(with Bootstrapping)

Normal -0.002 0.044 (0.046) 0.005 0.051 (0.050)

𝒕𝒕𝟓𝟓 -0.023 0.047 (0.054) -0.038 0.048 (0.055)

Weibull(1, 2.5) 0.288 0.044 (0.049) 0.230 0.06 (0.054)

Log-Normal 0.413 0.041 (0.045) 0.305 0.057 (0.055)

Log-Normal 0.658 0.039 (0.049) 0.483 0.060 (0.055)

Weibull(1, 1.5) 0.888 0.040 (0.054) 0.675 0.069 (0.054)

Chi-square(3) 1.330 0.032 (0.043) 1.017 0.065 (0.057)

Exp(1) 1.584 0.031 (0.052) 1.252 0.071 (0.059)

Weibull(1, 0.6) 3.616 0.024 (0.057) 2.659 0.11 (0.104)

Log-Normal 6.035 0.019 (0.048) 4.595 0.099 (0.100)

Weibull(1, 6) -0.298 0.057 (0.051) -0.229 0.050 (0.053)

Weibull(1, 10) -0.508 0.061 (0.054) -0.398 0.050 (0.054)

Weibull(1, 100) -0.901 0.064 (0.055) -0.691 0.046 (0.052)

-Log-Normal -5.401 0.138 (0.111) -4.184 0.020 (0.054)
*10,000 Bootstrap samples were used to get an average type I error rate
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Impact of Sample Size: Upper-tail and Lower-tail Test
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Estimated Type I Error Rates vs. sample size 
for Both Paired 𝑡𝑡-test and Bootstrapping 𝑡𝑡-test 
with positive skewed paired difference in 
lower-tailed tests

Estimated Type I Error Rates vs. sample size 
for Both Paired 𝑡𝑡-test and Bootstrapping 𝑡𝑡-test 
with negative skewed paired difference in 
upper-tailed tests
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Remarks
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• In the linear mixed-effects model, the test results may be more
related to the distribution of the difference in paired residuals, while
in current approach we just check the distribution of all residuals.

• The type I error rate can differ substantially from the nominal level if
the skewness of paired difference is severe, even as the sample size to
be as large as 100. As the distribution gets more skewed, the type I
error rate gets further away from the nominal level.

• In paired t-test, bootstrapping can have the type I error rate closer to
its nominal level when the skewness of paired difference is not severe.
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Power for Shapiro-Wilk W test 
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• Razali and Wah (2011) 
stated that “Shapiro-Wilk 
W-test is the most 
powerful test for both 
symmetric non-normal 
and asymmetric 
distributions. However, 
the power of Shapiro-Wilk 
W-test is still low for small 
sample size.”
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Conclusions
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• The normality assumptions need to be checked before applying linear mixed-effects model and
paired 𝑡𝑡-test.

• In the linear mixed-effects model approach with small sample size of 30 ~ 50, the distribution of
the difference in paired residuals for each contrast may be more relevant.

• The type I error rate will be inflated in lower tailed-test for positive skewness and upper tailed-
test for negative skewness.

• The type I error rate may be inflated for both mixed model and paired 𝑡𝑡-test with a sample size
less than 40 even when the distribution is quite symmetric (skewness = -0.5 to 0.5), though the
magnitude of inflation may not be large.

• When the paired difference has skewness between -1 and 1, Bootstrapping 𝑡𝑡-test performs
better than paired 𝑡𝑡-test in reducing the inflation of type I error rate.

• If the distribution is quite symmetric, the normality likely will not be rejected by the W-test.
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Bootstrapping Method
1) Calculate the paired difference 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑁𝑁 between two treatments;
2) Draw 𝑁𝑁 Bootstrap samples with replacement from 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑁𝑁 , denote as

𝑥𝑥1∗, 𝑥𝑥2∗, … , 𝑥𝑥𝑁𝑁∗ ;
3) Compute

𝑡𝑡𝑏𝑏∗ =
�𝜃𝜃𝑏𝑏
∗−�𝜃𝜃
�𝜎𝜎𝑏𝑏
∗ , 

where �𝜃𝜃𝑏𝑏∗ and �𝜎𝜎𝑏𝑏∗ are the sample mean and standard error of Bootstrap samples
𝑥𝑥1∗, 𝑥𝑥2∗, … , 𝑥𝑥𝑁𝑁∗ , �̂�𝜃 is the sample mean of original samples 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑁𝑁;

4) Repeat steps 2) to 3) for 𝐵𝐵 times (e.g., 𝐵𝐵 = 10,000), where 𝑏𝑏 = 1, 2, … ,𝐵𝐵, obtain
the 95% Bootstrap-𝑡𝑡 CI of 𝑡𝑡𝑏𝑏∗. If the 95% Bootstrap-𝑡𝑡 CI does not cover 𝑡𝑡0 =

�𝜃𝜃−𝜃𝜃0
�𝜎𝜎

,
then the null hypothesis is rejected at 0.05 level.
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