
Estimation of the Cumulative Incidence Function
Under Multiple Dependent and Independent

Censoring Mechanisms, with application to safety
and efficacy of HIV treatment

Judith J. Lok
Department of Mathematics and Statistics

Boston University
jjlok@bu.edu

Joint work with Shu Yang, Brian Sharkey, and Michael Hughes.
2020 ASA Biopharmaceutical Section Regulatory-Industry

Statistics Workshop
September 25, 3:30 session, 2020

1 / 41



Background

ART recommended treatment for HIV-positive patients.

Many types of ART.

Goal:

Compare efficacy and safety of 3-drug versus 4-drug ART in the
treatment of HIV-positive patients.

Efficacy: time to virologic failure (VF) while on initial treatment.

Safety: time to discontinuation of initial treatment because of a
treatment-limiting adverse event (TLAE).
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Competing risks setting

Event type:

Virologic failure (VF)

Discontinuation of initial treatment because of a treatment
limiting adverse event (TLAE)

Discontinuation of initial treatment because of clinical events,
disallowed medications, pregnancy, or death (TLOE,
Treatment Limiting Other Events).

Event time: time until VF, TLAE, or TLOE, whichever comes first.
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Estimand: the Cumulative Incidence Function

P (failure of type j before time t) .

T : failure time. J: failure type.

CIFj(t) = P (T ≤ t, J = j) .

Cumulative Incidence Function.

From the above:

P (T ≤ t) =
∑
j

P (T ≤ t, J = j) .

4 / 41



Counterfactual scenario of interest
Counterfactual scenario of interest:
“Had no one discontinued initial treatment for reasons other than
virologic failure (VF), treatment limiting adverse events (TLAE),
clinical events mandating treatment discontinuation, disallowed
medications, pregnancy, or death (TLOE).”

Reasons:
1 Reasons other than these for treatment discontinuation might

be avoided in clinical practice.
2 What would happen if initial treatment is taken as long as

feasible?

Censored patients when they were no longer following
counterfactual scenario.
⇒

1 Administrative censoring.
2 Discontinuation of initial treatment because of

dropout/patient decision.
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Estimating the Cumulative Incidence Function without
censoring

Possible estimating equations based on the full data are

Pn

(
1{T≤t,J=j} − P (T ≤ t, J = j)

)
= 0,

where Pn indicates the empirical average over all patients.
Motivation:

E
(
1{T≤t,J=j} − P (T ≤ t, J = j)

)
= 0.

Fix time t. Define:

Q (full datai ) =
(
1{Ti≤t,J=j} − P (T ≤ t, J = j)

)
.
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Method: Inverse Probability of Censoring Weighting
(IPCW) for competing risks

Common to discretize the data for Inverse Probability of Censoring
Weighting (IPCW):

Lk : covariates and outcomes at period k .

A: treatment assignment.

Ck = 0 if the patient was uncensored at period k (and Ck = 1
otherwise).

K : last period of interest.

⇒ Full data (with overbars indicating history): (LK+1,A).
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Method: IPCW for competing risks

Full data (with overbar indicating history): (LK+1,A).
Then:

E

(
1CK=0

P(CK = 0|LK+1,A)
Q(LK+1,A

)
= 0.

Need:

Assumption: (Positivity). P
(
CK = 0|LK+1,A

)
> 0 for all

possible values of (LK+1,A).

No matter what a patient’s full data, there is a positive probability
of observing his/her full data.
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Method: IPCW for competing risks

E

(
1CK=0

P(CK = 0|LK+1,A)
Q(LK+1,A)

)
= 0.

Re-write

P(CK = 0|LK+1,A) =
K∏

k=1

P
(
Ck = 0|LK+1,A,Ck−1 = 0

)
.
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Method: IPCW for competing risks under MAR

Assumption: (Missing At Random (MAR)). See e.g. Robins
et al. (1995). For every k = 2, . . . ,K , with Yk = 1 if an event
took place in period k or earlier and Yk = 0 if not,

L̄K+1⊥⊥ADMINk |L̄k−1, Ȳk = 0,A,Ck−1 = 0,

and

L̄K+1⊥⊥LTFUk |L̄k−1, Ȳk = 0,A,Ck−1 = 0,ADMINk = 0.

Here, ⊥⊥ indicates conditional independence Dawid (1979).

MAR: Censoring depends only on past observed values, and not
further on prognosis.
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Method: IPCW for competing risks: MAR

Missing At Random: MAR: Censoring only depends on past
observed values, and not further on prognosis.

Lk needs to include whether an event took place before time k ,
and its type (for Q known given full data). Then, need enough
covariates measured to make MAR plausible.

E.g., if current CD4 count CD4k predicts both censoring in the
subsequent period and future events or their type, need current
CD4 count in Lk .
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Method: IPCW for competing risks under MAR

Under MAR:

P(CK = 0|L̄K+1,A)

=
K∏

k=2

P
(
ADMINk = 0|L̄k−1,Yk = 0,A,Ck−1 = 0

)
·P
(
LTFUk = 0|L̄k−1,Yk = 0,A,Ck−1 = 0,ADMINk = 0

)
.

Common interpretation: weight of censored patients gets
distributed over “similar” patients in follow-up, with “similar”
determined at the last observed clinic visit (Robins et al. (1995),
Cole and Hernán (2008)).
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Continuous time: MAR

Discretizing the time may lead to some bias, so we also looked at a
continuous time scale.

Assumptions: for both censoring types r = 1, 2 we assume MAR:

λC ,r (t|V̄T ,T , J,T > t) = λC ,r (t|V̄t ,T > t) (1)

where
λC ,r (t|V̄T ,T , J,T > t) = limh↓0

P(t≤C<t+h,R=r |C≥t,V̄T ,T ,J,T>t)
h .

In words, we assume that the hazard of censoring at time t for
reason r , depends only on the measured variables up to time t and
not on any future observed or unobserved variables, failure time, or
failure type.
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Continuous time: Modeling assumptions

Assumption: Information available until last time point of interest:

λC ,r (t|V̄T ,T , J,T > t) < ξ (2)

with probability 1 for some constant ξ, for t in the interval [0, ν).

Cox’s proportional hazards model for censoring:

λC ,r (t|V̄t) = λ0,r (t) exp[γ′rwr (t, V̄t)], (3)

where λ0,r (t) is an unknown, non-negative function of t, wr (t, V̄t)
is a specified function of t and V̄t , and γr is an unknown
parameter vector.

Reason: when V̄t is high dimensional, we cannot estimate
λC ,r (t|V̄t) nonparametrically due to the curse of dimensionality.
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Continuous time: IPCW weights

Following Rotnitzky et al. (2007), we define the inverse weights
π(t|V̄t ; Λ0):

π(t|V̄t ; Λ0) = exp

(
−
∫ t

0
λC (u|V̄T ,T , J,T > u)du

)
= exp

(
−
∫ t

0

r∗∑
r=1

λ0,r (u) exp[γ′rwr (u, V̄u)]du

)

=
r∗∏
r=1

∏
0≤u≤t

[1− exp[γ′rwr (u, V̄u)]dΛ0,r (u)],

with the cumulative baseline hazard, Λ0,r (t), defined as
Λ0,r (t) =

∫ t
0 λ0,r (s)ds.
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Continuous time: IPCW estimator

An estimate of Fj(t): solution to

n∑
i=1

∆̃i

πi (T̃i |V̄i ,T̃i
; Λ0)

{1(Ti ≤ t, Ji = j)− Fj(t)} = 0 (4)

where T̃ is the minimum time such that 1(T ≤ t, J = j) is
observed, i.e. T̃ = min(T , t), and ∆̃ = 1(T̃ < C ).

Shown: (4) is unbiased estimating equation for Fj(t) since under
MAR, Pr(∆̃ = 1|VT̃ ) = π(T̃ |V̄T̃ ; Λ0).

Without regularity condition (2), we would be dividing by 0; a
positivity violation, where some patients have probability 0 of
remaining uncensored, and IPCW fails (Robins et al., 1995).
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Continuous time: towards Doubly Robust IPCW estimator
Can improve efficiency of previous IPCW estimator by introducing
augmentation term (Tsiatis (2006); Rotnitzky et al. (2005)): solve

n∑
i=1

{
∆̃i

πi (T̃i |V̄T̃i
; Λ0)

{1(Ti ≤ t, Ji = j)− Fj(t)}−Ai{Fj(t), γ, b(·)}
}

= 0

(5)
with augmentation term

A{Fj(t), γ, b(·)} ≡
r∗∑
r=1

∫
b(u, V̄u)

π(u-|V̄u; Λ0(u))
dMC ,r (u), (6)

with b(u, V̄u) a user specified, left-continuous function of u and
V̄u, π

(
u-|V̄u; Λ0(u)

)
the left-continuous version of π,

MC ,r (u) = NC ,r (u)−
∫ u

0
1(X ≥ s) exp

{
γ′rwr (s, V̄s)

}
dΛ0,r (s).

(7)
(5) is unbiased estimating equation for Fj(t).
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Continuous time: Doubly Robust IPCW estimator
For efficiency reasons, we choose

b(u, V̄u) = −E

[{
1(T ≤ t, Ji = j)− Fj(t)

}∣∣∣∣V̄u-,T ≥ u

]
. (8)

If we can consistently estimate b(u, V̄u) as defined in (8) then we
can find an estimate of Fj(t) as the solution to

n∑
i=1

{
∆̃i

π̂i (T̃i |V̄T̃i
; Λ̂0)

{1(Ti ≤ t, Ji = j)− Fj(t)}−Âi (Fj(t), b̂(u, V̄u), γ̂)

}
= 0,

(9)

Â(Fj(t), b̂(u, V̄u), γ̂)

=
r∗∑
r=1

∫ T̃

0

−P̂[(T ≤ t, J = j)|V̄u-,T ≥ u] + Fj(t)

π̂(u-|V̄u; Λ̂0(u))
dM̂C ,r (u),

M̂C ,r (u) = NC ,r (u)−
∫ u

0
exp

{
γ̂′rwr (s, V̄s)

}
d Λ̂0,r (s).
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Continuous time: Doubly Robust IPCW estimator

In practice, estimating the conditional expectation
E[{1(T ≤ t, J = j)− Fj(t)}|V̄u-,T ≥ u] can be difficult, because
V u is time-dependent. To make the problem more tractable, in
practice we estimated

E[{1(T ≤ t, J = j)− Fj(t)}|V̄0,T ≥ u], (10)

where V̄0 are the baseline covariates. One way to estimate (10) is:

P̂[(T ≤ t, J = j)|V̄0,T ≥ u] =

∫ t
u Ŝ(a-|V̄0)d Λ̂j(a|V̄0)

Ŝ(u-|V̄0)
, (11)

with Λ̂j(a|V̄0) = Λ̂0,j(a) exp
{
β̂′j f (V̄0)

}
and β̂′j the estimated

parameter vector from a Cox proportional hazards model.
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Continuous time: Doubly Robust IPCW estimator

If we can consistently estimate b(u, V̄u) as defined in (8), then
F̂A
j (t) would be doubly robust (Rotnitzky et al., 2005).

That is, F̂A
j (t) is consistent and asymptotically normal if the model

for the censoring process, π(t|V̄t ; Λ0), is correctly specified or the
outcome model, E[1(T ≤ t, J = j)|V̄u-,T ≥ u] is correctly
specified.

Also, if both the model for the censoring process and outcome
model are correctly specified then F̂A

j (t) is locally semi-parametric
efficient (Robins and Rotnitzky, 1992; Tsiatis, 2006).
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HIV illustration: Data

ACTG 5095 (Gulick et al. (2004, 2006)).

3-drug regimen: zidovudine/lamivudine plus efavirenz.
4-drug regimen: zidovudine/lamivudine/abacavir plus efavirenz.

Double blind RCT, 3-drug versus 4-drug ART for HIV-positive
patients.

758 patients, and in first 3 years:
146 VF, 58 TLAE, 26 TLOE, 96 LTFU, 432 ADMIN.
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HIV illustration: nuisance paramter models

Model for lost to follow-up (LTFU): literature review of variables
that might predict LTFU in HIV-positive patients.

Model for administrative censoring: only needed characteristics
whose distribution was different in patients enrolled earlier than in
patients enrolled later. Including more variables that may be
predictive of the outcome of interest might increase precision
(Rotnitzky et al. (2010)).
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HIV illustration: nuisance paramter models

Included in the IPCW models for LTFU: randomized treatment
group, age (indicator for ≤ 30 years old), sex, injection drug use
(ever/never), black non-hispanic, hispanic, baseline log10 viral load,
time-dependent indicator of CD4 count ≤ 200, and period
variables: “period 3”, “period 4”, “period 5-8”, “period 9-13”, and
“period 14-18”, with period 2 representing the reference group for
these variables (in period 1, only one patient had no visit after
baseline and thus was LTFU, and we modeled that separately
without including covariates).

Included in the IPCW models for ADMIN: same, but with period
variables indicator variables were included for “period 17” and
“period 18”. First periods: virtually no administrative censoring,
and we only included period as a categorical variable; this
effectively reduces to Efron’s redistribute-to-the-right algorithm
(Efron (1967)).
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Cumulative Incidence Curves, by regimen
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Fig. 1: Cumulative Incidence Curves, by Regimen
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Standard Errors, by regimen and failure type (bootstrap)
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Fig. 2: Standard Errors of F̂j(t), by Regimen and Type of Failure, using Bootstrap variance estimation.
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HIV illustration: Results

We compared our augmented and non-augmented IPCW
estimators with the standard estimate of the cumulative incidence
function (Andersen et al., 1993) which assumes independent
censoring, the Aalen-Johansen estimator.

We conclude that IPCW and augmented IPCW doesn’t
substantially decrease the precision compared to an unweighted
analysis.

Useful since IPCW and augmented IPCW more robust to
informative censoring.
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We also predicted the CIF based on baseline covariates

For this, we discretized the time. We fit the following prediction
model for the CIFs (τ fixed here):

P (failure of type j before time τ |X = x) =
1

1 + e−(β0+β1x)
.

T : failure time. J: failure type. X : baseline covariates.

P (T ≤ τ, J = j |X = x) =
1

1 + e−(β0+β1x)
.

Type-specific logistic regression model. Results:
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Table 3: Multivariate analysis. Estimated odds ratios for events within 144 weeks of starting treatment (95%-
confidence intervals).

Baseline covariate VF2 TLAE3 events
(VF2/TLAE3/TLOE4)

ART: 4 drugs (vs 3 drugs) 0.94 (0.62,1.43), p=0.78 1.59 (0.88,3.05), p=0.12 1.07 (0.75,1.54), p=0.70
age (per 10 years older) 0.93 (0.74,1.16), p=0.53 1.36 (0.99,1.87), p=0.05 1.14 (0.95,1.39), p=0.16
black non-Hispanic1 2.11 (1.43,3.19), p<0.001 0.85 (0.43,1.49), p=0.56 1.55 (1.10,2.20), p=0.01
viral load (per log10 copies/ml higher) 1.29 (0.99,1.73), p=0.06 1.03 (0.70,1.52), p=0.89 1.17 (0.93,1.48), p=0.18
injection drug use: ever (vs never) 3.75 (1.64,9.44), p=0.003 1.64 (0.000,5.05)5, p=0.55 3.53 (1.60,9.99), p=0.003
ART*injection drug use 0.32 (0.07,1.09), p=0.07 0.25 (0.000,7×105)5, p=0.21 0.27 (0.06,0.87), p=0.03

1 versus white non-Hispanic/other/Hispanic. 2 Virologic Failure. 3 Treatment Limiting Adverse Event. 4 Treat-
ment Limiting Other Event. 5 Confidence interval may be unreliable because of small number of events (see text).
Number of bootstrap samples: 20000.
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We also predicted the CIF based on baseline covariates

In the multivariate model for VF, the interaction of injection drug
use and randomized treatment suggests:

Among patients who never injected drugs, adding a fourth drug to
the antiviral regimen has little impact on the odds of VF
(OR = 0.94, p = 0.78).

Among patients who reported ever injecting drugs, adding a fourth
drug to the ART regimen significantly decreases the odds of VF
(OR = 0.29, p = 0.03) (and the odds of the composite outcome,
OR = 0.29, p = 0.03).
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Summary

Counterfactual scenario where no one discontinues treatment
for reasons other than VF, TLAEs, or TLOEs (clinical events,
disallowed medications, pregnancy, or death): when deciding
between different treatment regimens, if initial treatment will
be taken as long as it works.

⇒ Censored patients when they were no longer following
counterfactual scenario.

⇒ Informative censoring.

⇒ Inverse Probability of Censoring Weighting (IPCW),
adapted to the competing risk setting.

⇒ Derived Doubly-Robust estimators.
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Future directions

Consider testing whether the two cumulative incidence
functions for VFs and TLAEs are the same in both treatment
groups, in the presence of TLOEs, using a 2-dimensional
version of Gray’s test (Gray (1988)) taking dependencies into
account.
((I have shown: if the cause specific hazard for TLOEs is the
same in both treatment groups, the null hypothesis of no
difference in the cumulative incidence functions for VFs and
TLAEs is equivalent to the null hypothesis of no difference in
any of the cumulative incidence functions, provided the sum
of the cause specific hazard functions for VFs and TLAEs is a
piecewise analytic function (for both treatment groups))).
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THANKS!
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In many cases, analysts assume that administrative censoring, or
equivalently date of randomization in the study, is independent of
(L̄K ,YK+1,YK+1J, LTFUK ). In that case, no covariates are
needed in the model for administrative censoring, because

P
(
ADMINk = 0|L̄k−1, Ȳk ,Ck−1 = 0

)
=

P
(
ADMINk = 0 and LTFUk−1 = 0|L̄k−1, Ȳk

)
P
(
ADMINk−1 = 0 and LTFUk−1 = 0|L̄k−1, Ȳk

)
=

P
(
ADMINk = 0|LTFUk−1 = 0, L̄k−1, Ȳk

)
P
(
ADMINk−1 = 0|LTFUk−1 = 0, L̄k−1, Ȳk

)
=

P (ADMINk = 0)

P (ADMINk−1 = 0)
, (12)

independent of (L̄k−1, Ȳk). One may however want to include
some covariates in the prediction model for ADMIN to increase
precision (Rotnitzky et al. (2010)).
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In our application, it is possible that simplification (12) does not
necessarily hold.

It is possible that patients with characteristics which suggest that
they might be harder to follow, may be under-represented in the
patient population enrolling early, if clinical sites target enrollment
first on patients who might be easier to follow.

May still assume: administrative censoring, or, equivalently, date of
randomization in the study, depends on some selection of baseline
covariates but not further on the prognosis of patients under the
scenario of interest, or on their LTFU pattern:(

L̄K , ȲK+1,YK+1J, LTFUk−1

)
⊥⊥ADMINk |V , (13)

where V is a subset of the baseline covariates thought to predict
date of enrollment.
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Under equation (13), since V is part of L0,

ADMINk |V , LTFUk−1 ∼ ADMINk |V , L̄K , ȲK+1,YK+1J, LTFUk−1,

where ∼ indicates that the left hand side has the same distribution
as the right hand side, so that we have the following simplification:

P
(
ADMINk = 0|L̄k−1, Ȳk ,Ck−1 = 0

)
= P (ADMINk = 0|V ,Ck−1 = 0) .

⇒ only covariates that potentially predict randomization date need
to be included in the model for administrative censoring.
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Stabilized weights

Why not stabilize weights?

1 Can only stabilize for variables included in the prediction
model, not for the unconditional CIFs.

2 Would need to go on stabilizing after an event took place,
instead of carrying the weight forward. Would be different if
focus was on the cause specific hazard instead of the
cumulative incidence functions.
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