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Introduction of challenges and methods for borrowing 
information from historical data
Elastic prior approach
Conclusion
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Borrowing Information from Historical Data
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Experimental
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Control
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Experimental

Historical DataControl

Historical data may or may not be congruent to trial data due to various 
reasons
• Different patient population, eligibility criteria, treatment procedure, facilities, 

care providers… 

A Double-edged Sword
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Sc. Historical
Mean 

Control
Mean

Experimental
Mean

Consequence of borrowing

A 1 1 2 Increase power/reduce sample size

B 0.5 1 1 Inflated type I error

C 1.5 1 2 Reduced power
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Borrow if historical data are congruent to the control (of the trial); 
otherwise, do not borrow

Adaptive Information Borrowing
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Experimental

Historical Data

Control

Enrollment 2:1 randomization

Experimental

Historical DataControl

Control
incongruent

congruent

Power Prior (Ibrahim and Chen, 2000)
Commensurate prior (Hobbs, et al., 2011)
Robust meta-analysis-predictive prior (Schmidli, et al., 2014)
Bayesian hierarchical model (Bernardo and Smith, 1994)

Bayesian Methods for Information Borrowing
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Power Prior
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Control

Borrow

Discount

Historical Data

Let ! denote the treatment effect
Let "#(!) denote the prior distribution of ! (before accounting for the 
historical data), typically specified as noninformative prior 
Let &# denote the historical data, and & denote the trial data
Power prior is given by

" ! &#, ( ∝ * &# ! +"#(!)
• *(&#|!) is the likelihood of historical data
• ( is the power parameter, controlling how much information to be borrowed 

from &#

Power Prior
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Adding the trial data !, the posterior of " arises as

# " !, !%, & ∝ # " !%, & ( ! "
= #% " ( !% " *((!|")

When & = 1, fully information borrowing from !%, and when & = 0, no 
information borrowing
Key issue: how to determine the value of & ?
A natural approach is to assign & a prior (e.g., uniform prior) and let data 
determine the degree of borrowing
This approach, however, does not work well and leads to substantial type I 
error inflation (Neuenschwander et al., 2000; Pan and Yuan, 2017)

Power Prior

Page 12

Difficulty of Power Prior
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Commensurate Prior
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Control

Shrink

Historical Data

Let !" denote the true treatment effect in the historical data
Commensurate prior is given by

# ! $", !", & ∝ ( $" !" # ! !", & #"(!)
& is the shrinkage parameter, controlling how much information to be 
borrowed from $"
Suppose # ! !", & = ,(!", &-.), then when & → 0, little information 
borrowing, and when & → ∞, full information borrowing

Commensurate Prior
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Given trial data !, the posterior of " is

# " !, !%, & ∝ # " !%, "%, & ( ! "
= #%(") ( !% "% ( ! " # " "%, &

Commensurate prior can be viewed as a special form of Bayesian hierarchical 
model geared to borrow from one historical dataset
Key issue: how to determine the value of & ?
A natural approach is to assign & a prior (e.g., uniform or spike-slab prior) 
and let data determine the degree of borrowing
Similar issue as the power prior: cannot control information borrowing 
appropriately and lead to inflated type I errors

Commensurate Prior

Page 16

Difficulty of Commensurate Prior
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Mean Type I error/Power (%)
Historical Control Experimental No 

Borrow
Commensurate 

prior
Power 
Prior

1 1 1 5.0 5.0 5.0
1 1 1.5 66.3 91.6 88.3
0 1 1 5.0 14.6 30.0
2 1 1.5 66.3 57.6 37.8

Simulation
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N=50 for historical, 25 for control, 50 for experimental

Data contain very limited information to quantify the 
congruence/variation between the trial data and historical data
Information unit is the number of datasets, not the number of 
subjects!

Intrinsic Difficulty for Adaptive Borrowing
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Historical Data

Control

congruent or not?
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Can We Make Progress?
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Elastic Prior

YES!

Elastic Prior
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Control Historical Data
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Bayesian learning
Prior + Historical Data à Posterior 

!" # $ %" # → ! # %"
è New Prior + New Data à New Posterior 

! # %" $ % # → ! # %", %
è …...
Idea: discount the information in ! # %" by inflating its variance 
adaptively according to the elastic function

Elastic Prior
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Suppose ! " #$ = &("$, )*)
Elastic prior is

!, " #$ = &("$, )*/.(/))

where .(/) is the elastic function, and T is a measure of      
congruence between #$ and #.

Elastic Prior
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Consider a normal endpoint !, let "#$ and "# denote sample means of 
%$ and %, and & is standard error
Define a metric ' to measure the congruence between %$ and %

' = "# − "#$
&*

Elastic function is defined as
+ ' = 1

1 + exp 1 + 2[log ' ]
To achieve adaptive information borrow, we enforce that +(')à 1 
when when %$ and % are congruent, and +(')à large (e.g., 100) 
when %$ and % are incongruent.

Elastic Function
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Procedure to determine the parameters of elastic function
1. Consult with regulatory agencies to choose a margin ! that represents a 

practically significant difference in treatment effect, e.g., ! = 0.2"
2. Simulate congruent case by simulating # with " = "% and obtain the 

corresponding &%. Let &'% denote the (%th percentile of &%.
3. Simulate incongruent case by simulating # with " = "% + ! and obtain the 

corresponding &+. Let &'+ denote the (+th percentile of &+.
4. Solve (-, /) by setting 

1 &'% = 1 (Full borrow)
1 &'+ = 0.01 (Discount #% by a factor of 100)

Determine Parameters of Elastic Function

Page 27



9/24/20

12

Theorem For any method that borrows information from historical or 
other external data, dynamically or non-dynamically, the inflation of 
type I or II error is inevitable under finite samples, depending on 
whether historical or other external data under- or over-estimate the 
treatment effect of the control arm when compared to the current 
data. 
The reason is simple: even when the truth is that ! ≠ !#, in finite 
samples, there is non-zero probability that the observed data $# and $
are similar, thus triggers information borrowing and results inflated 
type I or II error

An inconvenient fact
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Wish gain in power, but no type I error inflation

Choose the borrowing and no-borrowing cutoff to optimize power 
(under congruence case) and type I error (in the congruence case)

! "#, "% = ' − )%* − )+ * − *∗ -(* > *∗)
where ' is the power under the congruence case, * is the type I error 
under the incongruence case, *∗ is a threshold.

Optimize the tradeoff

Type I error

Utility

*∗
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Flexible: readily accommodate the borrow/no borrow requirement 
prespecified by investigators or regulatory agency
Functional: achieve adaptive information borrowing, i.e., full borrow 
(thus power gain) when !" and ! are congruent, little borrow (thus 
little type I error inflation and bias) when !" and ! are incongruent
Objective: can be prespecified and included in the protocol before the 
trial starts
Realistic: optimize the power-type-I-error tradeoff

Desirable Properties of Elastic Prior
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Mean Type I error/Power

Historical Control Experimental
No

Borrow
Commensurate 

prior
Power 
Prior

Elastic
Prior

1 1 1 5.0 5.0 5.0 5.0
1 1 1.5 66.3 91.6 88.3 93.6
0 1 1 5.0 14.6 30.0 7.3
2 1 1.5 66.3 57.6 37.8 72.6

Simulation
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N=50 for historical, 25 for control, 50 for experimental; 
Elastic prior: 0.5! difference is regarded as practically incongruent
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