Using Elastic Prior to Design Clinical Trials with Adaptive Information Borrowing

Ying Yuan MD Anderson Cancer Center

Liyun Jian (MDACC) and Lei Nie (FDA)

Outline Introduction of challenges and methods for borrowing information from historical data Elastic prior approach Conclusion

Sim	nulatio	on									
	N=50 for historical, 25 for control, 50 for experimental										
	Mean			Type I error/Power (%)							
	Historical	Control	Experimental	No Borrow	Commensurate prior	Power Prior					
	1	1	1	5.0	5.0	5.0					
	1	1	1.5	66.3	91.6	88.3					

Elastic Function • Consider a normal endpoint *Y*, let \bar{y}_0 and \bar{y} denote sample means of D_0 and *D*, and *S* is standard error • Define a metric *T* to measure the congruence between D_0 and *D* $T = \frac{|\bar{y} - \bar{y}_0|}{S^2}$ • Elastic function is defined as $g(T) = \frac{1}{1 + \exp\{a + b[\log(T)]\}}$ • To achieve adaptive information borrow, we enforce that $g(T) \neq 1$ when when D_0 and *D* are congruent, and $g(T) \neq 1$ large (e.g., 100) when D_0 and *D* are incongruent.

mu	ation							
N=50 for Elastic p	^r historica rior: 0.5σ	l, 25 for cont difference is	rol, 50 for expe regarded as p	erimental; ractically incong	ruent			
Mean			Type I error/Power					
Historical	Control	Experimental	No Borrow	Commensurate prior	Power Prior	Elastic Prior		
1	1	1	5.0	5.0	5.0	5.0		
1	1	1.5	66.3	91.6	88.3	93.6		
0	1	1	5.0	14.6	30.0	7.3		
2	1	1.5	66.3	57.6	37.8	72.6		
						Dana 24		

Reference

Jiang L, Nie L and Yuan Y (2020) Elastic priors to dynamically borrow information from historical data in clinical trials, <u>arXiv:2009.06083</u>

