
Landscape of Causal Inference Frameworks 
of Clinical Studies Using RWD/RWE 

Martin Ho, MS

Associate Director for Patient Input & RWE

Office of Biostatistics and Epidemiology

Center for Biologics Evaluation and Research, FDA

On Behalf of ASA BIOP RWE Scientific Working Group 

BIOP 2020 24 September 2020



2

Disclaimer

This talk reflects the views of the author 

and should not be construed to 

represent FDA’s views or policies.
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RCT Estimand is Causal in Nature

“ Central questions for drug development and licensing are to 
establish the existence, and to estimate the magnitude, of 
treatment effects: how the outcome of treatment compares 
to what would have happened to the same subjects under 
alternative treatment (i.e. had they not received the 
treatment, or had they received a different treatment). ” 

ICH E9 (R1) Addendum on Estimands and Sensitivity Analysis in Clinical Trials to the 
Guideline on Statistical Principles for Clinical Trials (2019)
https://database.ich.org/sites/default/files/E9-R1_Step4_Guideline_2019_1203.pdf

https://database.ich.org/sites/default/files/E9-R1_Step4_Guideline_2019_1203.pdf
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Causal Inference Framework: Scientific Principles 

that Bridge between What We Can & What We Want

Observed World (Real Study) Causal World (Ideal Experiment)

What we can learn from obs. data What we want to know

Compare outcomes between different 
groups of patients

Compare counterfactual outcomes of the 
same group of patients  

Would the outcomes of the patients who 
took Drug X be better than those who 

took Drug Y?*

Would the outcomes be better if all
patients took Drug X instead of Drug Y?*

Observed variables only Observed & unobserved variables

* We are interested in the causal effect of the difference between counterfactual outcomes.
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RWE Causal Inference Framework: 1/8

1. Setup – Describe data statistically
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1. Describe Study and Observed Data

• Assume the RWD are evaluated as fit for use for a study

• Study has n subjects randomly and independently drawn 
from the same population of interest.

• A subject has a set of observed data 𝑂 = (𝑊, 𝐴, 𝑌) where

𝑊 = baseline covariates 

𝐴 = a single treatment (0,1) assigned at baseline, and 

𝑌 = an outcome observed at a fixed time point

𝑂~𝑃0 unknown
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RWE Causal Inference Framework: 2/8

1. Setup – Describe data statistically

2. Target Estimand – A local attraction



8

2. Target Estimand: A Local Attraction (1)

Do the observed data have enough info. to answer the question?

• To define what “enough” is, we need to specify a goal or “destination”.

• Use causal model to define an ideal experiment as the destination.

• Figure out what questions we can answer using the observed data 
only (like a local attraction we can go).  

• How close is this “local attraction” where we can go to the destination 
where we want to go?
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2. Target Estimand: A Local Attraction (2)

• A causal estimand 𝛹𝑐 is a causal-model based estimand that answers 
the research question, i.e., what we want (details in next step)

• A target estimand 𝛹𝑜𝑏𝑠 is an observed-data based estimand that best 
approximates the 𝛹𝑐. 

• How “close” 𝛹𝑜𝑏𝑠 is to 𝛹𝑐? 

1. Statistical: If both are equal, then specify criteria (e.g., unbiased, min. 
variance) for an estimator according to specific needs of the question.

2. Causal: If not, then consider another target estimand or determine what 
additional assumptions would be required to make both equal.  
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RWE Causal Inference Framework: 3/8

1. Setup – Describe data statistically

2. Target Estimand – A local attraction

3. Causal Model – An ideal experiment
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3. Causal Model: an Ideal Experiment (1)

• Potential outcomes 𝑌0, 𝑌1 of a subject is the subject’s outcome when 
being assigned to receive the control & active treatment, respectively.

• ⟹ An observed outcome of a subject is 𝑌 = 𝐴𝑌1 + (1 − 𝐴)𝑌0. 

• A causal effect is a comparison of 𝑌0 and 𝑌1, e.g., 𝑌1 − 𝑌0.  

• A causal model mathematically represents our knowledge and 
uncertainty about the data generating process of an ideal experiment, 
describing the causal relationships between each dependent variable 
with other variables, measured (observed) or not.
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3. Causal Model: An Ideal Experiment (2)

• Incorporate explicit knowledge & uncertainty about the study, e.g.,

– Sampling scheme

– Treatment assignment mechanism

– Censoring mechanism

• Two common classes:

– Neyman-Rubin causal model (Neyman 1923, Rubin 1973)

– Structural causal model (Pearl 2000)  

– Fundamentally equivalent using the concept of potential outcomes
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Example: Structural Causal Model

• 𝑂 = (baseline covariates 𝑊, assigned treatment 𝐴, outcome 𝑌)

• 𝑊, 𝐴, 𝑌 are driven by deterministic but unknown functions 𝑓𝑤, 𝑓𝑎, 𝑓𝑦

• 𝑈{𝑤,𝑎,𝑦}: unobserved & random; covar. structure reflects causal relationships.

Structural equation Our knowledge about the study

𝑊 = 𝑓𝑤(𝑈𝑤) 𝑈𝑎 & 𝑈𝑦 do not affect 𝑊; 𝑈𝑤 distribution unknown

𝐴 = 𝑓𝑎(𝑊, 𝑈𝑎) 𝑊 influences treatment assignment

𝑌 = 𝑓𝑦(𝑊, 𝐴, 𝑈𝑦) 𝐴 &𝑊 influence outcome
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RWE Causal Inference Framework: 4/8

1. Setup – Describe data statistically

2. Target Estimand – A local attraction

3. Causal Model – An ideal experiment

4. Causal Estimand – The destination
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4. Causal Estimand: Our Destination

A Causal estimand is a function of the distribution of the counterfactuals, 
comparing 𝑌0 and 𝑌1 (say, 𝑌1 − 𝑌0) cross all patients or a subgroup, e.g.:

— Average treatment effect (ATE): 𝔼𝑌1 − 𝔼𝑌0

— Average treatment effect on the treated (ATT): 𝔼 𝑌1|𝐴 = 1 − 𝔼 𝑌0|𝐴 = 1

• Suppose one specifies 𝛹𝑐 = ATE (= 𝔼𝑌1 − 𝔼𝑌0)

• A 𝛹𝑜𝑏𝑠 candidate that approximates 𝛹𝑐:

𝛹𝑜𝑏𝑠 = 𝔼𝑤,0 𝔼0 𝑌|𝐴 = 1, 𝑊) − 𝔼0(𝑌|𝐴 = 0, 𝑊

• What assumptions do we need to make 𝛹𝑐 = 𝛹𝑜𝑏𝑠?  
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Example: Causal Estimand
Recall: Subject has baseline covariates 𝑊, assigned treatment 𝐴, obs. outcome 𝑌

Structural equation Our knowledge about study’s data generating process

𝑊 = 𝑓𝑤(𝑈𝑤) 𝑈𝑎 & 𝑈𝑦 do not affect 𝑊; 𝑈𝑤 distribution unknown 

𝐴 = 𝑓𝑎(𝑊, 𝑈𝑎) 𝑊 influences treatment assignment

𝑌 = 𝑓𝑦(𝑊, 𝐴, 𝑈𝑦) 𝐴 &𝑊 influence outcome

Describe a research question precisely using a well-defined ideal experiment

• A subject’s potential outcomes: 𝑌1 = 𝑓𝑦 𝑊, 1, 𝑈𝑦 and 𝑌0 = 𝑓𝑦 𝑊, 0, 𝑈𝑦

• A subject’s causal effect: 𝑌1 − 𝑌0 = 𝑓𝑦 𝑊, 1, 𝑈𝑦 − 𝑓𝑦 𝑊, 0, 𝑈𝑦

• A population’s causal estimand 𝛹𝑐 = 𝔼𝑌1 − 𝔼𝑌0
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RWE Causal Inference Framework: 5/8

1. Setup – Describe data statistically

2. Target Estimand – A local attraction

3. Causal Model – An ideal experiment

4. Causal Estimand – Our destination

5. Identification – How close are we?
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5. Identification: How Close Are We?

• Definition: If 𝛹𝑐 can be written as some function of the observed data 
distribution (e.g., 𝛹𝑜𝑏𝑠), then it is identified. 

• If 𝛹𝑐 = 𝛹𝑜𝑏𝑠, then 𝛹𝑐 is identifiable.

What additional causal assumptions would make 𝛹𝑐 = 𝛹𝑜𝑏𝑠?

By g-computation identifiability result (Robins 1986), 𝛹𝑐 = 𝛹𝑜𝑏𝑠 if:

I. 𝑈𝑎 is independent of 𝑈𝑦, conditional on 𝑊 Cond. Randomization

II. 0 < 𝑃 𝐴 = 1 | 𝑊 < 1 Positivity

Then, 

𝛹𝑜𝑏𝑠 = 𝔼𝑤,0 𝔼0 𝑌|𝐴 = 1, 𝑊) − 𝔼0(𝑌|𝐴 = 0, 𝑊 on obs. data only

= 𝔼0 𝑌 | 𝐴 = 1 − 𝔼0 𝑌 | 𝐴 = 0 = 𝛹𝑐
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1. Setup – Describe data statistically

2. Target Estimand – A local attraction

3. Causal Model – An ideal experiment

4. Causal Estimand – The Destination

5. Identification – How close are we?

6. Estimator – “Best” way to get there

RWE Causal Inference Framework: 6/8
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6. Estimator – “Best” Way to Get There

• An estimator is defined as an a priori algorithm.

• Decouple the estimator from the causal estimand

• Choose estimators based on statistical properties (e.g., bias, variances)

• Popular estimators include:

– Parametric g-computation (Robins 1986)

– Doubly robust estimation (Bang and Robins 2005)

– Matching estimators (Stuart 2010)

– Inverse probability of treatment weighting (Rotnitzky and Robins 2014)

– Target maximum likelihood estimation with machine learning methods (van der 
Laan and Rose 2011)
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1. Setup – Describe data statistically

2. Target Estimand – A local attraction

3. Causal Model – An ideal experiment

4. Causal Estimand – The Destination

5. Identification – How close are we?

6. Estimator – “Best” way to get there

7. Statistical Inference – Uncertainty

RWE Causal Inference Framework: 7/8
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7. Statistical Inference – Uncertainty

• One can use various methods based on an estimator of the 
sampling distribution of the estimator chosen at #6.

– Normal approximation, e.g., Wald-type confidence interval

– Resampling, e.g., bootstrap

• Proposed confidence interval requires:

– Asymptotic linearity and normality for validity

– Simulation studies for finite sample coverage
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1. Setup – Describe data statistically

2. Target Estimand – A spot we can go

3. Causal Model – An ideal experiment

4. Causal Estimand – The destination

5. Identification – How close are we?

6. Estimator – “Best” way to get there

7. Statistical Inference – Uncertainty

8. Sensitivity Analysis – Robustness

RWE Causal Inference Framework 
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8. Interpretation and Sensitivity Analysis 

• Robustness against violating the assumptions that bridge the 
identification gap between the target & casual estimand 

• A lot of these identification assumptions are non-testable. 

• Evaluate a hierarchy of result interpretation with increasing 
strength of assumptions for a causal interpretation (Petersen 
and van der Laan 2014) 

• Sensitivity analysis assesses the impacts of each level of 
assumption violations in the hierarchy on the statistical results 
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Next Steps: RWE SWG Phase II Topics

Team and Co-leads Topic 

I
Jie Chen (Overland Pharma)
Hana Lee (CDER)

Estimands: From concepts to applications in 
real-world setting 

II
Weili He (Abbvie) *

Mark Levenson (CDER)
Principles and approaches for the use and 
evaluation of fit-for-purpose data sources 

III
Yixin Fang (Abbvie)
Martin Ho (CBER) *

Illustrative examples of applying the RWE 
causal inference roadmap to clinical studies

* Co-chair of the ASA BIOP RWE SWG
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Concluding Remarks

• A good RWE Causal Inference Framework should be: 
– Rigorous enough to meet the evidentiary standards for regulators, and

– Flexible enough to accommodate the evolving sources of RWD

• Decoupling estimation method & causal modeling: makes statisticians 
to explicitly state the research question (as a causal estimand) first.

• Specified causal estimand can guide statisticians to develop causally 
interpretable statistical estimators that are closer to their destinations. 

• Examples of applying the RWE Causal Inference Framework to clinical 
trials can promote these scientific principles among statisticians.



27

References
Bang, H. and Robins, J. M. (2005), "Doubly Robust Estimation in Missing Data and Causal Inference 
Models." Biometrics 61(4), 962-973. 

Imbens, G. W. and Rubin, D. B. (2017), “Rubin Causal Model,” in The New Palgrave Dictionary of 
Economics (Durlauf, S. and Blume, C. eds.), 2nd ed. New York: Palgrave Macmillan.

Neyman, J. (1923), “On the Application of Probability Theory To Agricultural Experiments,” Annals of 
Agricultural Sciences, 1-51. 

Pearl, J. (2000), Causality. Cambridge, UK: Cambridge University Press.

Petersen, M. L. and van der Laan, M. J. (2014), “Causal Models and Learning from Data: Integrating 
Causal Modeling and Statistical Estimation,” Epidemiology, 25(3), 418. 

Rotnitzky, A. and Robins, J. M. (2014), "Inverse Probability Weighting in Survival Analysis," in Wiley 
StatsRef: Statistics Reference Online.

Rubin, D. B. (1973), “Matching to Remove Bias in Observational Studies,” Biometrics, 159-183. 

Rubin, D. B. (2005), “Causal Inference Using Potential Outcomes,” JASA, 100(469), 322-331. 

Stuart, E. A. (2010), "Matching Methods for Causal Inference: A Review and a Look Forward," Statistical 
Science 25(1), 1-21.

Van der Laan M. J. and Rose S. (2011), Targeted Learning: Causal Inference for Observational and 
Experimental Data. New York: Springer.

Van der Laan, M.J. and Rose, S. (2018), Targeted Learning in Data Science. New York: Springer.




