### Leveraging Historical Information: Methods and Applications

#### Ming-Hui Chen

Department of Statistics, University of Connecticut E-Mail: ming-hui.chen@uconn.edu

2020 ASA Biopharmaceutical Section Regulatory-Industry Statistics Workshop (Virtual) September 24, 2020



#### **1** Power Priors

#### 2 Measures for Information and Data Compatibility

#### **3** Bayesian Sample Size Determination

#### Historical Information

- Historical data are often available in clinical trials, genetics, health care, psychology, environmental health, engineering, economics, and business.
- In medical devices, historical data are often available from previous trials only from the control device.
- In pediatric rare cancer study, the data from adult patients may be available.
- In rare disease setting, an efficacious standard of care (S) is already on the market. Thus, the historical data are available from the treatment of S.

#### Leveraging Historical Information: Power Prior

- The first paper to discuss the formalization of the power prior as a general prior for various classes of regression models is Ibrahim and Chen (2000).
- Chen and Ibrahim (2006) establish the relationship between the power prior and hierarchical models.
- Ibrahim et al. (2015) give an A to Z exposition of the power prior and its applications to date.
- The power prior has emerged as a useful class of informative priors for a variety of situations in which historical data are available.

#### References

 $\diamondsuit$  lbrahim, J. G. and Chen, M.-H. (2000). Power prior distributions for regression models. Statistical Science 15, 46-60.

 $\diamondsuit$  Chen, M.-H. and Ibrahim, J.G. (2006). The Relationship Between the Power Prior and Hierarchical Models. Bayesian Analysis 1, 551-574.

 $\diamondsuit$  Ibrahim, J.G., Chen, M.-H., Gwon, Y., and Chen, F. (2015). The Power Prior: Theory and Applications. *Statistics in Medicine*, *34*, 3724-3749.

#### The Basic Setting for the Power Prior

- Let the data from the current study be denoted by D = (n, y, X), where n denotes the sample size, y denotes the  $n \times 1$  response vector, and X denotes the  $n \times p$  matrix of covariates.
- Denote the likelihood for the current study by  $L(\theta|D)$ , where  $\theta$  is the vector of model parameters. Thus,  $L(\theta|D)$  can be a general likelihood function for an arbitrary regression model, such as a generalized linear model, random effects model, nonlinear model, or a survival model with right censored data.
- Denote the historical data by  $D_0 = (n_0, y_0, X_0)$ .
- Let π<sub>0</sub>(θ) denote the prior distribution for θ before the historical data D<sub>0</sub> is observed.
- $\pi_0(\theta)$  is typically taken to be improper.
- $\pi_0(\theta)$  is called the initial prior distribution for  $\theta$ .

#### Basic Formulation of the Power Prior

Given  $a_0$ , the power prior (Ibrahim and Chen, 2000) of  $\theta$  for the current study is defined as

 $\pi(\boldsymbol{ heta}|D_0, \boldsymbol{a}_0) \propto L(\boldsymbol{ heta}|D_0)^{\boldsymbol{a}_0} \pi_0(\boldsymbol{ heta}).$ 

- $a_0$  is a scalar prior parameter that weights the historical data relative to the likelihood of the current study. It controls the influence of the historical data on  $\pi(\theta|D_0, a_0)$ .
- a<sub>0</sub> can be interpreted as a discounting parameter, a precision parameter, and a parameter which reflects the heterogeneity (compatibility) between current and historical data.
- It is reasonable to restrict the range of  $a_0$  to be between 0 and 1, and thus we take  $0 \le a_0 \le 1$ .
- $a_0$  controls the heaviness of the tails of the prior for  $\theta$ . As  $a_0$  becomes smaller, the tails of  $\pi(\theta|D_0, a_0)$  become heavier.

#### Example: Logistic Regression Model

We simulated a data set consisting n<sub>0</sub> = 200 independent Bernoulli observations with success probability

$$p_{0i} = rac{\exp\left\{-0.5 + 0.5 x_{0i}
ight\}}{1 + \exp\left\{-0.5 + 0.5 x_{0i}
ight\}}, \qquad i = 1, 2, \dots, n_0,$$

where the  $x_{0i}$  are *i.i.d.* normal random variables with mean 0 and standard deviation 0.5.

• Let  $\beta = (\beta_0, \beta_1)'$ . Then, the likelihood function is given by

$$L(oldsymbol{eta}|D_0) = \prod_{i=1}^{n_0} rac{\exp\{y_{0i} oldsymbol{x}_{0i}^\primeoldsymbol{eta}\}}{1+\exp\{oldsymbol{x}_{0i}^\primeoldsymbol{eta}\}},$$

and the power prior with an improper uniform initial prior is thus given by

$$\pi(oldsymbol{eta}|D_0, \mathsf{a}_0) \propto \prod_{i=1}^{n_0} rac{\exp\{a_0 y_{0i} oldsymbol{x}_{0i}'oldsymbol{eta}\}\}}{(1+\exp\{oldsymbol{x}_{0i}'oldsymbol{eta}\})^{\mathsf{a}_0}}.$$

### Figure: Contours of the Power Prior for $a_0 = 0.07$ , 0.17, 0.50



- The centers of the power priors remain the same for different  $a_0$  values.
- The tails of the power priors become heavier and the prior surfaces are getting flatter, as a<sub>0</sub> becomes smaller.

#### Normalized Power Priors

• Assuming that  $a_0$  is random, the normalized power prior (Duan, Ye, and Smith, 2006; Neuenschwander et al., 2009) of  $\theta$  for the current study is defined as

$$\pi(\boldsymbol{\theta}, \boldsymbol{a}_0 | D_0) = \pi(\boldsymbol{\theta} | D_0, \boldsymbol{a}_0) \pi(\boldsymbol{a}_0) = \frac{L(\boldsymbol{\theta} | D_0)^{\boldsymbol{a}_0} \pi_0(\boldsymbol{\theta})}{\int L(\boldsymbol{\theta} | D_0)^{\boldsymbol{a}_0} \pi_0(\boldsymbol{\theta}) d\boldsymbol{\theta}} \pi_0(\boldsymbol{a}_0),$$

where  $\pi_0(\theta)$  is an initial prior and  $\pi(a_0)$  is a marginal prior for  $a_0$ .

For the normalized power prior, we must have

$$\int {\it L}(oldsymbol{ heta}|{\it D}_0)^{s_0} \; \pi_0(oldsymbol{ heta}) {\it d}oldsymbol{ heta} < \infty$$

for  $0 < a_0 \le 1$ .

- Ibrahim, Chen, Xia, and Liu (2012, Biometrics) propose the partial borrowing power prior.
- Hobbs et al. (2011, Biometrics; 2012, Bayesian Analysis) propose the hierarchical commensurate and power prior.



#### **1** Power Priors

#### 2 Measures for Information and Data Compatibility

### **Bayesian Sample Size Determination**

### HPD Region

 For parameter θ with the probability density function f(θ), the 100(1 - α)% HPD region is the subset of the parameter space Θ such that

$$R(\alpha) = \{ \boldsymbol{\theta} \in \Theta : f(\boldsymbol{\theta}) \geq f_{\alpha} \},\$$

where  $f_{\alpha}$  is the largest constant such that  $P(\theta \in R(\alpha)) \ge 1 - \alpha$ .

• Theorem: For log-concave densities, the  $100(1 - \alpha)$ % HPD region is a closed convex set.

#### Notation

- Let  $\pi(\theta | \text{data}) \propto L(\theta | D) \pi(\theta)$  denote the posterior distribution given the data D, where  $L(\theta | D)$  and  $\pi(\theta)$  are the likelihood function and a prior distribution.
- The  $100(1 \alpha)$ % HPD region for  $\theta$  based on the prior distribution is then defined as

$$R_1(\alpha) = \left\{ oldsymbol{ heta} \in \Theta : \pi(oldsymbol{ heta}) \geq \pi^1_{lpha} 
ight\},$$

where  $\pi^1_{\alpha}$  is the largest constant such that  $P(\theta \in R_1(\alpha)) \ge 1 - \alpha$ .

Similarly, the 100(1 –  $\alpha$ )% HPD region for  $\theta$  based on the posterior distribution is given by

$$R_2(\alpha) = \left\{ oldsymbol{ heta} \in \Theta : \pi(oldsymbol{ heta}|D) \geq \pi_{lpha}^2 
ight\},$$

where  $\pi_{\alpha}^2$  is the largest constant such that  $P(\theta \in R_2(\alpha)) \ge 1 - \alpha$ .

#### Information ${\mathcal I}$

- Our measure *I* is based on the comparison of V(R<sub>1</sub>(α)) and V(R<sub>2</sub>(α)), where V(·) represents the volume.
- Definition 1: Let φ = V(R<sub>1</sub>(α))/V(R<sub>2</sub>(α)). The information I is defined as:

$$\mathcal{I} = \log \phi = \log \frac{V(R_1(\alpha))}{V(R_2(\alpha))}.$$



(a) No Information (b) Positive Information (c) Negative Information

#### Dissonance $\mathcal{D}$

• Definition 2: For  $R_1(\alpha)$  and  $R_2(\alpha)$ , let  $R_{\min}(\alpha)$  denote the region with smaller volume and  $R_{\max}(\alpha)$  denote the larger one. The dissonance  $\mathcal{D}$  is measured as the fraction of the volume of the smaller HPD region that is not overlapping with the larger HPD region, i.e.,

$$\mathcal{D} = \frac{V(R_{\min}(\alpha) \cap \overline{R_{\max}(\alpha)})}{V(R_{\min}(\alpha))},$$
(1)

where  $R_{\min}(\alpha) \cap \overline{R_{\max}(\alpha)} = \{ \boldsymbol{\theta} \in \Theta : \boldsymbol{\theta} \in R_{\min}(\alpha), \boldsymbol{\theta} \notin R_{\max}(\alpha) \}$ .



(d) No Dissonance (e) Partial Dissonance (f) Complete Dissonance

### Comparing Two Data Sets or Two Posterior Distributions

- The two new measures I and D can be extended to compare two data sets or two posterior distributions given that the the parameter spaces are assumed to be the same.
- We can simply let  $R_1(\alpha)$  and  $R_2(\alpha)$  be the HPD regions computed under the two posterior distributions corresponding to two data sets using the same prior or corresponding to two prior distributions using the same data set.

#### $\text{Choice of } \alpha$

- The values of  $\mathcal{I}$  and  $\mathcal{D}$  depend on the content level  $\alpha$ .
- In practice, we need to choose α such that we consider using a 100(1 α)% HPD region to represent a set of plausible values.
- For our measure  $\mathcal{I}$ , one common choice is  $\alpha = 0.05$ , i.e., using the 95% HPD region.
- We can also compute  ${\mathcal I}$  for different  $\alpha$  values to get overall conclusion.
- Our measure  $\mathcal{D}$  is more sensitive to the choice of  $\alpha$ .
- Instead of fixing a value of α, we plot the curve of D versus α and summarize the extent of conflict using area under the curve (d-AUC), with smaller value suggesting that two data sets/two distributions are compatible and larger value indicating contradiction in the range of [0, 1].

#### Application to Pediatric Cancer Data

- The data are from Ye et al. (Pharmaceutical Statistics, 2020, DOI: 10.1002/pst.2039).
- Examine the effect of NDA22068 Nilotinib for pediatric patients.
- The outcome variable is the major molecular response (MMR: BCRABL/ABL  $\leq 0.1\%$  IS).
- The data:  $D_0 = (n_A = 282, y_A = 125)$  for adult patients and  $D = (n_P = 25, y_P = 15)$  for pediatric patients.
- Assume that  $y_A \sim B(n_A, p)$  and  $y_P \sim B(n_P, p)$ .
- Consider the power using  $D_A$  as the "historical data":

$$\pi(p) \propto p^{-1}(1-p)^{-1} \ \pi(p|D_0,D,a_0) \propto \pi(p)[L(p|D_0)]^{a_0}L(p|D) \ \sim Beta(a_0y_A+y_P,a_0(n_A-y_A)+(n_P-y_P))$$

- The range of  $a_0$  is between 0 and 1, with  $a_0 = 0$  meaning that no incorporation of Adult data.
- We compare  $\pi(p|D_0, D, a_0)$  to  $\pi(p|D_0, D, a_0 = 0)$  via  $\mathcal{D}$  and  $\mathcal{I}$ .

#### Plots of $\mathcal{D}$ versus $\alpha$ for 2 choices of $a_0$



### Plots of d-AUC and $\mathcal{I}$ over different choices of $a_0$



## Posterior distributions of Pediatric Data Only versus Borrowing



 Wei, S., Chen, M.-H., Kuo. L., and Lewis, P.O. (2020+). Bayesian Information and Dissonance. under revision for *Bayesian Analysis*.



#### **1** Power Priors

#### 2 Measures for Information and Data Compatibility

#### **3** Bayesian Sample Size Determination

#### Notation, Historical Data and Hypotheses

•  $n_0$  and  $n_c$ : the sample sizes of historical and current control arms;  $n_t$   $(> n_c)$ : the sample size of the test arm. We assume

$$y_{0i} \stackrel{i.i.d.}{\sim} \mathcal{N}(\mu_c, \sigma_c^2), \ \ y_{ci} \stackrel{i.i.d.}{\sim} \mathcal{N}(\mu_c, \sigma_c^2), \ \ \text{and} \ \ y_{ti} \stackrel{i.i.d.}{\sim} \mathcal{N}(\mu_t, \sigma_t^2),$$

where  $\mu_c$  and  $\sigma_c$  are the mean and the standard deviation of the control arm, and  $\mu_t$  and  $\sigma_t$  are the mean and the standard deviation of the test arm.

Historical data

| <i>n</i> <sub>0</sub> | Mean  | SD   | Age    |
|-----------------------|-------|------|--------|
| 44                    | -0.18 | 3.38 | 4 to 8 |

- The means and standard deviations are in the unit of change in 6-month NSAA total score.
- Hypothesis of interest:  $H_0$ :  $\delta = \mu_t \mu_c \le 0$  versus  $H_1$ :  $\delta = \mu_t \mu_c > 0$  for a superiority trial comparing test drug with the placebo.  $\delta =$  the effect size.
- $\mu_c$ ,  $\sigma_c^2$ , and  $\sigma_t^2$  are nuisance parameters.

#### Posteriors with the Power Priors and Decision Rule

- $D_0 = (n_0, \bar{y}_0, S_0^2)$  and  $D = (n_t, \bar{y}_t, S_t^2, n_c, \bar{y}_c, S_c^2)$ , where  $\bar{y}_0, \bar{y}_c$ , and  $\bar{y}_t$  are the sample means, and  $S_0^2, S_c^2$ , and  $S_t^2$  are the sample variances for the historical data, the control and test arms, respectively.
- $\bullet \theta = (\mu_c, \sigma_c^2, \mu_t, \sigma_t^2)'.$
- The posterior distribution with the power prior is given by

$$\begin{aligned} &\pi(\boldsymbol{\theta}|D_0, D, a_0) \propto (\sigma_t^2)^{-\frac{n_t}{2}} \exp\left\{-\frac{1}{2\sigma_t^2}[n_t(\bar{y}_t - \mu_t)^2 + (n_t - 1)S_t^2]\right\} \\ &\times (\sigma_c^2)^{-\frac{n_c}{2}} \exp\left\{-\frac{1}{2\sigma_c^2}[n_c(\bar{y}_c - \mu_c)^2 + (n_c - 1)S_c^2]\right\} \\ &\times \left((\sigma_c^2)^{-\frac{1}{2}} \exp\{-\frac{n_0(\bar{y}_0 - \mu_c)^2}{2\sigma_c^2}\}(S_0^2)^{\frac{n_0 - 3}{2}}(\sigma_c^2)^{-\frac{n_0 - 1}{2}} \exp\left[-\frac{(n_0 - 1)S_0^2}{2\sigma_c^2}\right]\right)^{a_0} \pi_0(\boldsymbol{\theta}), \end{aligned}$$

where  $\pi_0(\theta)$  is an initial prior.

Here, the historical data is borrowed all together via the power prior.

### Posteriors with the Power Priors and Decision Rule (continued)

A new variation of power prior:

$$\begin{split} &\pi(\boldsymbol{\theta}|D_{0},\boldsymbol{a}_{0}) \propto \left((\sigma_{c}^{2})^{-\frac{1}{2}} \exp\{-\frac{n_{0}(\bar{y}_{0}-\mu_{c})^{2}}{2\sigma_{c}^{2}}\}\right)^{a_{01}} \\ &\times \left\{(S_{0}^{2})^{\frac{n_{0}-3}{2}}(\sigma_{c}^{2})^{-\frac{n_{0}-1}{2}} \exp\left[-\frac{(n_{0}-1)S_{0}^{2}}{2\sigma_{c}^{2}}\right]\right\}^{a_{02}} \pi_{0}(\boldsymbol{\theta}), \end{split}$$

where  $(n_0, \bar{y}_0)$  and  $(n_0, S_0^2)$  are borrowed by parts with distinct discounting parameters  $a_{01}$  and  $a_{02}$ .

- $\pi_0(\theta) \propto (\frac{1}{\sigma_c^2 \sigma_t^2})^m$ , where m = 0 corresponds to a uniform prior, m = 1 corresponds to a reference prior, and  $m = \frac{3}{2}$  corresponds to Jeffreys's prior.
- Bayesian Decision Rule:

Reject the null hypothesis of  $\delta \leq 0$  if  $P(\delta > 0|D_0, D) > \gamma$ , where the credible level  $\gamma$  is chosen so that when  $a_0 = 0$ , the overall Type I error rate is intended to be controlled at 0.025.

Consequence of Assuming  $\sigma_t^2 = \sigma_c^2$  on Type I Error  $(n_t = 50, n_c = 25, \delta = 0)$ 



• When  $\sigma_t^2 < \sigma_c^2$ , Type I error is inflated. When  $\sigma_t^2 > \sigma_c^2$ , Type I error is deflated, leading to loss of power.

Consequence of Model Assumption on Power ( $\sigma_t^2 = \sigma_c^2$ ?) ( $n_t = 50, n_c = 25, \delta = 3.5$ )



• When  $\sigma_t^2 > \sigma_c^2$ , the equal variance model leads to loss of power.

Effect of  $\pi_0(\theta)$  on Bayesian Type I Error without Borrowing ( $n_t = 50$ ,  $n_c = 25$ , and  $\mu_c = 0$ )

|               |                             | Bay    | esian Type I E      | rror       |        |        |  |
|---------------|-----------------------------|--------|---------------------|------------|--------|--------|--|
|               | Assuming Different Sigma    |        | Assuming Same Sigma |            |        |        |  |
| SD of Placebo | Mean of Current Control = 0 |        |                     |            |        |        |  |
|               | SD of Test                  |        |                     | SD of Test |        |        |  |
|               | 4                           | 4.5    | 5                   | 4          | 4.5    | 5      |  |
|               | Uniform Prior               |        |                     |            |        |        |  |
| 4             | 0.0192                      | 0.0197 | 0.0192              | 0.0237     | 0.0192 | 0.0165 |  |
| 4.5           | 0.0193                      | 0.0192 | 0.0193              | 0.0282     | 0.0236 | 0.0197 |  |
| 5             | 0.0195                      | 0.0197 | 0.0198              | 0.0321     | 0.0277 | 0.0232 |  |
|               | 1/sigma^2 Prior             |        |                     |            |        |        |  |
| 4             | 0.0235                      | 0.0236 | 0.0233              | 0.0250     | 0.0207 | 0.0176 |  |
| 4.5           | 0.0240                      | 0.0234 | 0.0234              | 0.0298     | 0.0249 | 0.0216 |  |
| 5             | 0.0239                      | 0.0236 | 0.0232              | 0.0343     | 0.0293 | 0.0252 |  |
|               | Jeffrey's Prior             |        |                     |            |        |        |  |
| 4             | 0.0252                      | 0.0252 | 0.0251              | 0.0257     | 0.0217 | 0.0181 |  |
| 4.5           | 0.0256                      | 0.0253 | 0.0250              | 0.0304     | 0.0259 | 0.0220 |  |
| 5             | 0.0258                      | 0.0255 | 0.0254              | 0.0354     | 0.0300 | 0.0257 |  |

# Bayesian Type I Error and Power with Borrowing ( $n_t = 50$ , $n_c = 25$ )



- Note: the maximum  $\mu_c$  to control type I error is about 0.35 for  $a_{01} = a_{02} = 0.5$ , and is about 0.18 for  $a_{01} = a_{02} = 1$ .
- Most power gain is achieved by borrowing 50% of historical data.

Bayesian Type I Error and Power with Conditional Borrowing ( $n_t = 50$ ,  $n_c = 25$ ,  $\sigma_c = 3.38$ ,  $\sigma_t = 5$ ,  $\bar{y}_0 = -0.18$ ,  $S_0 = 3.38$ )



- Note:  $\pi_0(\theta)$  is the uniform prior,  $\delta = 3.5$  for the power calculation, and the borrowing region of  $0.5 \times SE$  for both mean and SD.
- The type I is much smaller.
- Again, most power gain is achieved by borrowing 50% of historical data.

## Bayesian Type I Error and Power with Borrowing by parts ( $n_t = 50$ , $n_c = 25$ , $\bar{y}_0 = -0.18$ , $S_0 = 3.38$ )

|     | Ba  | yesian Type I Error a       | nd Power with Unknow   | wn Variance     |                   |  |
|-----|-----|-----------------------------|------------------------|-----------------|-------------------|--|
|     |     | Mean of Current Control = 0 |                        |                 |                   |  |
| a01 | a02 | Type I Error                | Power                  |                 |                   |  |
|     |     |                             | Effect Size = 3.5      | Effect Size = 4 | Effect Size = 4.5 |  |
|     | 1   | effrey's Prior, Sigma       | _t = 5, Sigma_c = 5, S | S_0 = 3.38      |                   |  |
| 0   | 0   | 0.0254                      | 80.15%                 | 89.44%          | 94.98%            |  |
| 0.5 | 0   | 0.0173                      | 92.21%                 | 97.22%          | 99.20%            |  |
| 1   | 0   | 0.0159                      | 96.49%                 | 99.10%          | 99.83%            |  |
| 0   | 0.5 | 0.0326                      | 83.82%                 | 91.78%          | 96.35%            |  |
| 0   | 1   | 0.0379                      | 85.51%                 | 92.81%          | 96.87%            |  |
| 0.5 | 0.5 | 0.0225                      | 93.96%                 | 98.02%          | 99.48%            |  |
| 1   | 1   | 0.0227                      | 97.68%                 | 99.46%          | 99.91%            |  |
|     | Je  | ffrey's Prior, Sigma_t      | t = 5, Sigma_c = 3.38, | S_0 = 3.38      |                   |  |
| 0   | 0   | 0.0249                      | 94.12%                 | 98.08%          | 99.49%            |  |
| 0.5 | 0   | 0.0217                      | 98.10%                 | 99.61%          | 99.94%            |  |
| 1   | 0   | 0.0225                      | 99.13%                 | 99.86%          | 99.99%            |  |
| 0   | 0.5 | 0.0247                      | 94.28%                 | 98.15%          | 99.51%            |  |
| 0   | 1   | 0.0246                      | 94.36%                 | 98.19%          | 99.53%            |  |
| 0.5 | 0.5 | 0.0214                      | 98.18%                 | 99.64%          | 99.95%            |  |
| 1   | 1   | 0.0221                      | 99.16%                 | 99.88%          | 99.99%            |  |

- Even with a "non-informative" prior, Bayesian type I error can be deflated, leading to loss of power.
- A mis-specified model may lead to a substantial inflation of type I error even under non-informative priors.
- Historical data can be borrowed by parts.
- Conditional borrowing or partial borrowing can further protect type I error.

I would like to thank all of my collaborators for their contributions on these 3 topics:

- Power Prior: Joseph G. Ibrahim (UNC), Yeongjin Gwon (UNMC), and Fang K. Chen (SAS)
- Information and Dissonance: Wei Shi, Lynn Kuo, and Paul Lewis (UConn)
- Bayesian Design: Wenlin Yuan (University of Connecticut) and John Zhong (Regenxbio).

Thank you !