Leveraging Historical Information: Methods and Applications

Ming-Hui Chen

Department of Statistics, University of Connecticut E-Mail: ming-hui.chen@uconn.edu

2020 ASA Biopharmaceutical Section Regulatory-Industry Statistics Workshop (Virtual) September 24, 2020

1 Power Priors

2 Measures for Information and Data Compatibility

3 Bayesian Sample Size Determination

Historical Information

- Historical data are often available in clinical trials, genetics, health care, psychology, environmental health, engineering, economics, and business.
- In medical devices, historical data are often available from previous trials only from the control device.
- In pediatric rare cancer study, the data from adult patients may be available.
- In rare disease setting, an efficacious standard of care (S) is already on the market. Thus, the historical data are available from the treatment of S.

Leveraging Historical Information: Power Prior

- The first paper to discuss the formalization of the power prior as a general prior for various classes of regression models is Ibrahim and Chen (2000).
- Chen and Ibrahim (2006) establish the relationship between the power prior and hierarchical models.
- Ibrahim et al. (2015) give an A to Z exposition of the power prior and its applications to date.
- The power prior has emerged as a useful class of informative priors for a variety of situations in which historical data are available.

References

 \diamondsuit lbrahim, J. G. and Chen, M.-H. (2000). Power prior distributions for regression models. Statistical Science 15, 46-60.

 \diamondsuit Chen, M.-H. and Ibrahim, J.G. (2006). The Relationship Between the Power Prior and Hierarchical Models. Bayesian Analysis 1, 551-574.

 \diamondsuit Ibrahim, J.G., Chen, M.-H., Gwon, Y., and Chen, F. (2015). The Power Prior: Theory and Applications. *Statistics in Medicine*, *34*, 3724-3749.

The Basic Setting for the Power Prior

- Let the data from the current study be denoted by D = (n, y, X), where n denotes the sample size, y denotes the $n \times 1$ response vector, and X denotes the $n \times p$ matrix of covariates.
- Denote the likelihood for the current study by $L(\theta|D)$, where θ is the vector of model parameters. Thus, $L(\theta|D)$ can be a general likelihood function for an arbitrary regression model, such as a generalized linear model, random effects model, nonlinear model, or a survival model with right censored data.
- Denote the historical data by $D_0 = (n_0, y_0, X_0)$.
- Let π₀(θ) denote the prior distribution for θ before the historical data D₀ is observed.
- $\pi_0(\theta)$ is typically taken to be improper.
- $\pi_0(\theta)$ is called the initial prior distribution for θ .

Basic Formulation of the Power Prior

Given a_0 , the power prior (Ibrahim and Chen, 2000) of θ for the current study is defined as

 $\pi(\boldsymbol{ heta}|D_0, \boldsymbol{a}_0) \propto L(\boldsymbol{ heta}|D_0)^{\boldsymbol{a}_0} \pi_0(\boldsymbol{ heta}).$

- a_0 is a scalar prior parameter that weights the historical data relative to the likelihood of the current study. It controls the influence of the historical data on $\pi(\theta|D_0, a_0)$.
- a₀ can be interpreted as a discounting parameter, a precision parameter, and a parameter which reflects the heterogeneity (compatibility) between current and historical data.
- It is reasonable to restrict the range of a_0 to be between 0 and 1, and thus we take $0 \le a_0 \le 1$.
- a_0 controls the heaviness of the tails of the prior for θ . As a_0 becomes smaller, the tails of $\pi(\theta|D_0, a_0)$ become heavier.

Example: Logistic Regression Model

We simulated a data set consisting n₀ = 200 independent Bernoulli observations with success probability

$$p_{0i} = rac{\exp\left\{-0.5 + 0.5 x_{0i}
ight\}}{1 + \exp\left\{-0.5 + 0.5 x_{0i}
ight\}}, \qquad i = 1, 2, \dots, n_0,$$

where the x_{0i} are *i.i.d.* normal random variables with mean 0 and standard deviation 0.5.

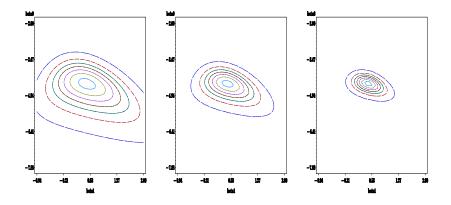
• Let $\beta = (\beta_0, \beta_1)'$. Then, the likelihood function is given by

$$L(oldsymbol{eta}|D_0) = \prod_{i=1}^{n_0} rac{\exp\{y_{0i} oldsymbol{x}_{0i}^\primeoldsymbol{eta}\}}{1+\exp\{oldsymbol{x}_{0i}^\primeoldsymbol{eta}\}},$$

and the power prior with an improper uniform initial prior is thus given by

$$\pi(oldsymbol{eta}|D_0, \mathsf{a}_0) \propto \prod_{i=1}^{n_0} rac{\exp\{a_0 y_{0i} oldsymbol{x}_{0i}'oldsymbol{eta}\}\}}{(1+\exp\{oldsymbol{x}_{0i}'oldsymbol{eta}\})^{\mathsf{a}_0}}.$$

Figure: Contours of the Power Prior for $a_0 = 0.07$, 0.17, 0.50



- The centers of the power priors remain the same for different a_0 values.
- The tails of the power priors become heavier and the prior surfaces are getting flatter, as a₀ becomes smaller.

Normalized Power Priors

• Assuming that a_0 is random, the normalized power prior (Duan, Ye, and Smith, 2006; Neuenschwander et al., 2009) of θ for the current study is defined as

$$\pi(\boldsymbol{\theta}, \boldsymbol{a}_0 | D_0) = \pi(\boldsymbol{\theta} | D_0, \boldsymbol{a}_0) \pi(\boldsymbol{a}_0) = \frac{L(\boldsymbol{\theta} | D_0)^{\boldsymbol{a}_0} \pi_0(\boldsymbol{\theta})}{\int L(\boldsymbol{\theta} | D_0)^{\boldsymbol{a}_0} \pi_0(\boldsymbol{\theta}) d\boldsymbol{\theta}} \pi_0(\boldsymbol{a}_0),$$

where $\pi_0(\theta)$ is an initial prior and $\pi(a_0)$ is a marginal prior for a_0 .

For the normalized power prior, we must have

$$\int {\it L}(oldsymbol{ heta}|{\it D}_0)^{s_0} \; \pi_0(oldsymbol{ heta}) {\it d}oldsymbol{ heta} < \infty$$

for $0 < a_0 \le 1$.

- Ibrahim, Chen, Xia, and Liu (2012, Biometrics) propose the partial borrowing power prior.
- Hobbs et al. (2011, Biometrics; 2012, Bayesian Analysis) propose the hierarchical commensurate and power prior.

1 Power Priors

2 Measures for Information and Data Compatibility

Bayesian Sample Size Determination

HPD Region

 For parameter θ with the probability density function f(θ), the 100(1 - α)% HPD region is the subset of the parameter space Θ such that

$$R(\alpha) = \{ \boldsymbol{\theta} \in \Theta : f(\boldsymbol{\theta}) \geq f_{\alpha} \},\$$

where f_{α} is the largest constant such that $P(\theta \in R(\alpha)) \ge 1 - \alpha$.

• Theorem: For log-concave densities, the $100(1 - \alpha)$ % HPD region is a closed convex set.

Notation

- Let $\pi(\theta | \text{data}) \propto L(\theta | D) \pi(\theta)$ denote the posterior distribution given the data D, where $L(\theta | D)$ and $\pi(\theta)$ are the likelihood function and a prior distribution.
- The $100(1 \alpha)$ % HPD region for θ based on the prior distribution is then defined as

$$R_1(\alpha) = \left\{ oldsymbol{ heta} \in \Theta : \pi(oldsymbol{ heta}) \geq \pi^1_{lpha}
ight\},$$

where π^1_{α} is the largest constant such that $P(\theta \in R_1(\alpha)) \ge 1 - \alpha$.

Similarly, the 100(1 – α)% HPD region for θ based on the posterior distribution is given by

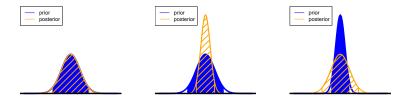
$$R_2(\alpha) = \left\{ oldsymbol{ heta} \in \Theta : \pi(oldsymbol{ heta}|D) \geq \pi_{lpha}^2
ight\},$$

where π_{α}^2 is the largest constant such that $P(\theta \in R_2(\alpha)) \ge 1 - \alpha$.

Information ${\mathcal I}$

- Our measure *I* is based on the comparison of V(R₁(α)) and V(R₂(α)), where V(·) represents the volume.
- Definition 1: Let φ = V(R₁(α))/V(R₂(α)). The information I is defined as:

$$\mathcal{I} = \log \phi = \log \frac{V(R_1(\alpha))}{V(R_2(\alpha))}.$$



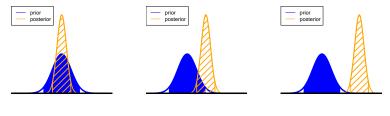
(a) No Information (b) Positive Information (c) Negative Information

Dissonance \mathcal{D}

• Definition 2: For $R_1(\alpha)$ and $R_2(\alpha)$, let $R_{\min}(\alpha)$ denote the region with smaller volume and $R_{\max}(\alpha)$ denote the larger one. The dissonance \mathcal{D} is measured as the fraction of the volume of the smaller HPD region that is not overlapping with the larger HPD region, i.e.,

$$\mathcal{D} = \frac{V(R_{\min}(\alpha) \cap \overline{R_{\max}(\alpha)})}{V(R_{\min}(\alpha))},$$
(1)

where $R_{\min}(\alpha) \cap \overline{R_{\max}(\alpha)} = \{ \boldsymbol{\theta} \in \Theta : \boldsymbol{\theta} \in R_{\min}(\alpha), \boldsymbol{\theta} \notin R_{\max}(\alpha) \}$.



(d) No Dissonance (e) Partial Dissonance (f) Complete Dissonance

Comparing Two Data Sets or Two Posterior Distributions

- The two new measures I and D can be extended to compare two data sets or two posterior distributions given that the the parameter spaces are assumed to be the same.
- We can simply let $R_1(\alpha)$ and $R_2(\alpha)$ be the HPD regions computed under the two posterior distributions corresponding to two data sets using the same prior or corresponding to two prior distributions using the same data set.

$\text{Choice of } \alpha$

- The values of \mathcal{I} and \mathcal{D} depend on the content level α .
- In practice, we need to choose α such that we consider using a 100(1 α)% HPD region to represent a set of plausible values.
- For our measure \mathcal{I} , one common choice is $\alpha = 0.05$, i.e., using the 95% HPD region.
- We can also compute ${\mathcal I}$ for different α values to get overall conclusion.
- Our measure \mathcal{D} is more sensitive to the choice of α .
- Instead of fixing a value of α, we plot the curve of D versus α and summarize the extent of conflict using area under the curve (d-AUC), with smaller value suggesting that two data sets/two distributions are compatible and larger value indicating contradiction in the range of [0, 1].

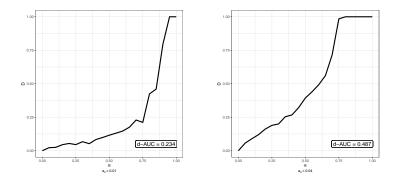
Application to Pediatric Cancer Data

- The data are from Ye et al. (Pharmaceutical Statistics, 2020, DOI: 10.1002/pst.2039).
- Examine the effect of NDA22068 Nilotinib for pediatric patients.
- The outcome variable is the major molecular response (MMR: BCRABL/ABL $\leq 0.1\%$ IS).
- The data: $D_0 = (n_A = 282, y_A = 125)$ for adult patients and $D = (n_P = 25, y_P = 15)$ for pediatric patients.
- Assume that $y_A \sim B(n_A, p)$ and $y_P \sim B(n_P, p)$.
- Consider the power using D_A as the "historical data":

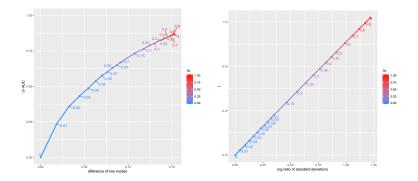
$$\pi(p) \propto p^{-1}(1-p)^{-1} \ \pi(p|D_0,D,a_0) \propto \pi(p)[L(p|D_0)]^{a_0}L(p|D) \ \sim Beta(a_0y_A+y_P,a_0(n_A-y_A)+(n_P-y_P))$$

- The range of a_0 is between 0 and 1, with $a_0 = 0$ meaning that no incorporation of Adult data.
- We compare $\pi(p|D_0, D, a_0)$ to $\pi(p|D_0, D, a_0 = 0)$ via \mathcal{D} and \mathcal{I} .

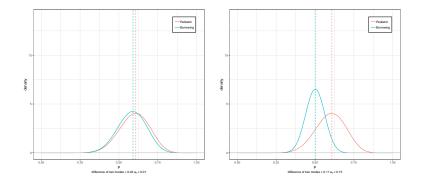
Plots of \mathcal{D} versus α for 2 choices of a_0



Plots of d-AUC and \mathcal{I} over different choices of a_0



Posterior distributions of Pediatric Data Only versus Borrowing



 Wei, S., Chen, M.-H., Kuo. L., and Lewis, P.O. (2020+). Bayesian Information and Dissonance. under revision for *Bayesian Analysis*.

1 Power Priors

2 Measures for Information and Data Compatibility

3 Bayesian Sample Size Determination

Notation, Historical Data and Hypotheses

• n_0 and n_c : the sample sizes of historical and current control arms; n_t $(> n_c)$: the sample size of the test arm. We assume

$$y_{0i} \stackrel{i.i.d.}{\sim} \mathcal{N}(\mu_c, \sigma_c^2), \ \ y_{ci} \stackrel{i.i.d.}{\sim} \mathcal{N}(\mu_c, \sigma_c^2), \ \ \text{and} \ \ y_{ti} \stackrel{i.i.d.}{\sim} \mathcal{N}(\mu_t, \sigma_t^2),$$

where μ_c and σ_c are the mean and the standard deviation of the control arm, and μ_t and σ_t are the mean and the standard deviation of the test arm.

Historical data

<i>n</i> ₀	Mean	SD	Age
44	-0.18	3.38	4 to 8

- The means and standard deviations are in the unit of change in 6-month NSAA total score.
- Hypothesis of interest: H_0 : $\delta = \mu_t \mu_c \le 0$ versus H_1 : $\delta = \mu_t \mu_c > 0$ for a superiority trial comparing test drug with the placebo. $\delta =$ the effect size.
- μ_c , σ_c^2 , and σ_t^2 are nuisance parameters.

Posteriors with the Power Priors and Decision Rule

- $D_0 = (n_0, \bar{y}_0, S_0^2)$ and $D = (n_t, \bar{y}_t, S_t^2, n_c, \bar{y}_c, S_c^2)$, where \bar{y}_0, \bar{y}_c , and \bar{y}_t are the sample means, and S_0^2, S_c^2 , and S_t^2 are the sample variances for the historical data, the control and test arms, respectively.
- $\bullet \theta = (\mu_c, \sigma_c^2, \mu_t, \sigma_t^2)'.$
- The posterior distribution with the power prior is given by

$$\begin{aligned} &\pi(\boldsymbol{\theta}|D_0, D, a_0) \propto (\sigma_t^2)^{-\frac{n_t}{2}} \exp\left\{-\frac{1}{2\sigma_t^2}[n_t(\bar{y}_t - \mu_t)^2 + (n_t - 1)S_t^2]\right\} \\ &\times (\sigma_c^2)^{-\frac{n_c}{2}} \exp\left\{-\frac{1}{2\sigma_c^2}[n_c(\bar{y}_c - \mu_c)^2 + (n_c - 1)S_c^2]\right\} \\ &\times \left((\sigma_c^2)^{-\frac{1}{2}} \exp\{-\frac{n_0(\bar{y}_0 - \mu_c)^2}{2\sigma_c^2}\}(S_0^2)^{\frac{n_0 - 3}{2}}(\sigma_c^2)^{-\frac{n_0 - 1}{2}} \exp\left[-\frac{(n_0 - 1)S_0^2}{2\sigma_c^2}\right]\right)^{a_0} \pi_0(\boldsymbol{\theta}), \end{aligned}$$

where $\pi_0(\theta)$ is an initial prior.

Here, the historical data is borrowed all together via the power prior.

Posteriors with the Power Priors and Decision Rule (continued)

A new variation of power prior:

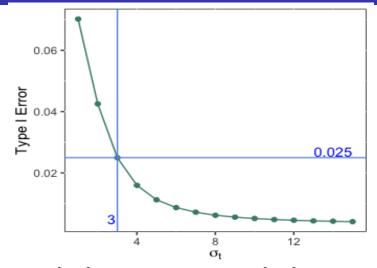
$$\begin{split} &\pi(\boldsymbol{\theta}|D_{0},\boldsymbol{a}_{0}) \propto \left((\sigma_{c}^{2})^{-\frac{1}{2}} \exp\{-\frac{n_{0}(\bar{y}_{0}-\mu_{c})^{2}}{2\sigma_{c}^{2}}\}\right)^{a_{01}} \\ &\times \left\{(S_{0}^{2})^{\frac{n_{0}-3}{2}}(\sigma_{c}^{2})^{-\frac{n_{0}-1}{2}} \exp\left[-\frac{(n_{0}-1)S_{0}^{2}}{2\sigma_{c}^{2}}\right]\right\}^{a_{02}} \pi_{0}(\boldsymbol{\theta}), \end{split}$$

where (n_0, \bar{y}_0) and (n_0, S_0^2) are borrowed by parts with distinct discounting parameters a_{01} and a_{02} .

- $\pi_0(\theta) \propto (\frac{1}{\sigma_c^2 \sigma_t^2})^m$, where m = 0 corresponds to a uniform prior, m = 1 corresponds to a reference prior, and $m = \frac{3}{2}$ corresponds to Jeffreys's prior.
- Bayesian Decision Rule:

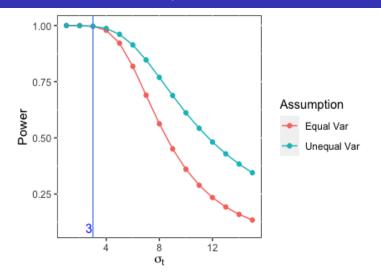
Reject the null hypothesis of $\delta \leq 0$ if $P(\delta > 0|D_0, D) > \gamma$, where the credible level γ is chosen so that when $a_0 = 0$, the overall Type I error rate is intended to be controlled at 0.025.

Consequence of Assuming $\sigma_t^2 = \sigma_c^2$ on Type I Error $(n_t = 50, n_c = 25, \delta = 0)$



• When $\sigma_t^2 < \sigma_c^2$, Type I error is inflated. When $\sigma_t^2 > \sigma_c^2$, Type I error is deflated, leading to loss of power.

Consequence of Model Assumption on Power ($\sigma_t^2 = \sigma_c^2$?) ($n_t = 50, n_c = 25, \delta = 3.5$)

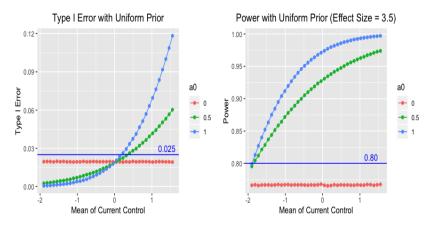


• When $\sigma_t^2 > \sigma_c^2$, the equal variance model leads to loss of power.

Effect of $\pi_0(\theta)$ on Bayesian Type I Error without Borrowing ($n_t = 50$, $n_c = 25$, and $\mu_c = 0$)

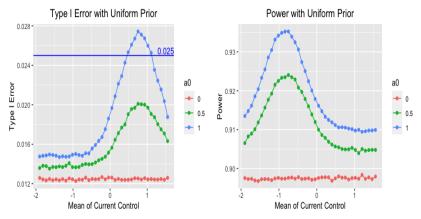
		Bay	esian Type I E	rror			
	Assuming Different Sigma		Assuming Same Sigma				
SD of Placebo	Mean of Current Control = 0						
	SD of Test			SD of Test			
	4	4.5	5	4	4.5	5	
	Uniform Prior						
4	0.0192	0.0197	0.0192	0.0237	0.0192	0.0165	
4.5	0.0193	0.0192	0.0193	0.0282	0.0236	0.0197	
5	0.0195	0.0197	0.0198	0.0321	0.0277	0.0232	
	1/sigma^2 Prior						
4	0.0235	0.0236	0.0233	0.0250	0.0207	0.0176	
4.5	0.0240	0.0234	0.0234	0.0298	0.0249	0.0216	
5	0.0239	0.0236	0.0232	0.0343	0.0293	0.0252	
	Jeffrey's Prior						
4	0.0252	0.0252	0.0251	0.0257	0.0217	0.0181	
4.5	0.0256	0.0253	0.0250	0.0304	0.0259	0.0220	
5	0.0258	0.0255	0.0254	0.0354	0.0300	0.0257	

Bayesian Type I Error and Power with Borrowing ($n_t = 50$, $n_c = 25$)



- Note: the maximum μ_c to control type I error is about 0.35 for $a_{01} = a_{02} = 0.5$, and is about 0.18 for $a_{01} = a_{02} = 1$.
- Most power gain is achieved by borrowing 50% of historical data.

Bayesian Type I Error and Power with Conditional Borrowing ($n_t = 50$, $n_c = 25$, $\sigma_c = 3.38$, $\sigma_t = 5$, $\bar{y}_0 = -0.18$, $S_0 = 3.38$)



- Note: $\pi_0(\theta)$ is the uniform prior, $\delta = 3.5$ for the power calculation, and the borrowing region of $0.5 \times SE$ for both mean and SD.
- The type I is much smaller.
- Again, most power gain is achieved by borrowing 50% of historical data.

Bayesian Type I Error and Power with Borrowing by parts ($n_t = 50$, $n_c = 25$, $\bar{y}_0 = -0.18$, $S_0 = 3.38$)

	Ba	yesian Type I Error a	nd Power with Unknow	wn Variance		
		Mean of Current Control = 0				
a01	a02	Type I Error	Power			
			Effect Size = 3.5	Effect Size = 4	Effect Size = 4.5	
	1	effrey's Prior, Sigma	_t = 5, Sigma_c = 5, S	S_0 = 3.38		
0	0	0.0254	80.15%	89.44%	94.98%	
0.5	0	0.0173	92.21%	97.22%	99.20%	
1	0	0.0159	96.49%	99.10%	99.83%	
0	0.5	0.0326	83.82%	91.78%	96.35%	
0	1	0.0379	85.51%	92.81%	96.87%	
0.5	0.5	0.0225	93.96%	98.02%	99.48%	
1	1	0.0227	97.68%	99.46%	99.91%	
	Je	ffrey's Prior, Sigma_t	t = 5, Sigma_c = 3.38,	S_0 = 3.38		
0	0	0.0249	94.12%	98.08%	99.49%	
0.5	0	0.0217	98.10%	99.61%	99.94%	
1	0	0.0225	99.13%	99.86%	99.99%	
0	0.5	0.0247	94.28%	98.15%	99.51%	
0	1	0.0246	94.36%	98.19%	99.53%	
0.5	0.5	0.0214	98.18%	99.64%	99.95%	
1	1	0.0221	99.16%	99.88%	99.99%	

- Even with a "non-informative" prior, Bayesian type I error can be deflated, leading to loss of power.
- A mis-specified model may lead to a substantial inflation of type I error even under non-informative priors.
- Historical data can be borrowed by parts.
- Conditional borrowing or partial borrowing can further protect type I error.

I would like to thank all of my collaborators for their contributions on these 3 topics:

- Power Prior: Joseph G. Ibrahim (UNC), Yeongjin Gwon (UNMC), and Fang K. Chen (SAS)
- Information and Dissonance: Wei Shi, Lynn Kuo, and Paul Lewis (UConn)
- Bayesian Design: Wenlin Yuan (University of Connecticut) and John Zhong (Regenxbio).

Thank you !