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Historical Information

Historical data are often available in clinical trials, genetics, health care,
psychology, environmental health, engineering, economics, and business.

In medical devices, historical data are often available from previous trials
only from the control device.

In pediatric rare cancer study, the data from adult patients may be
available.

In rare disease setting, an efficacious standard of care (S) is already on the
market. Thus, the historical data are available from the treatment of S.
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Leveraging Historical Information: Power Prior

The first paper to discuss the formalization of the power prior as a general
prior for various classes of regression models is Ibrahim and Chen (2000).

Chen and Ibrahim (2006) establish the relationship between the power
prior and hierarchical models.

Ibrahim et al. (2015) give an A to Z exposition of the power prior and its
applications to date.

The power prior has emerged as a useful class of informative priors for a
variety of situations in which historical data are available.
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The Basic Setting for the Power Prior

Let the data from the current study be denoted by D = (n, y ,X ), where
n denotes the sample size, y denotes the n × 1 response vector, and X
denotes the n × p matrix of covariates.

Denote the likelihood for the current study by L(θ|D), where θ is the
vector of model parameters. Thus, L(θ|D) can be a general likelihood
function for an arbitrary regression model, such as a generalized linear
model, random effects model, nonlinear model, or a survival model with
right censored data.

Denote the historical data by D0 = (n0, y0,X0).

Let π0(θ) denote the prior distribution for θ before the historical data D0

is observed.

π0(θ) is typically taken to be improper.

π0(θ) is called the initial prior distribution for θ.
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Basic Formulation of the Power Prior

Given a0, the power prior (Ibrahim and Chen, 2000) of θ for the current
study is defined as

π(θ|D0, a0) ∝ L(θ|D0)a0π0(θ).

a0 is a scalar prior parameter that weights the historical data relative to
the likelihood of the current study. It controls the influence of the
historical data on π(θ|D0, a0).

a0 can be interpreted as a discounting parameter, a precision parameter,
and a parameter which reflects the heterogeneity (compatibility) between
current and historical data.

It is reasonable to restrict the range of a0 to be between 0 and 1, and
thus we take 0 ≤ a0 ≤ 1.

a0 controls the heaviness of the tails of the prior for θ. As a0 becomes
smaller, the tails of π(θ|D0, a0) become heavier.
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Example: Logistic Regression Model

We simulated a data set consisting n0 = 200 independent Bernoulli
observations with success probability

p0i =
exp {−0.5 + 0.5x0i}

1 + exp {−0.5 + 0.5x0i}
, i = 1, 2, . . . , n0 ,

where the x0i are i .i .d . normal random variables with mean 0 and
standard deviation 0.5.

Let β = (β0, β1)′. Then, the likelihood function is given by

L(β|D0) =

n0∏
i=1

exp{y0ix ′0iβ}
1 + exp{x ′0iβ}

,

and the power prior with an improper uniform initial prior is thus given by

π(β|D0, a0) ∝
n0∏
i=1

exp{a0y0ix ′0iβ}
(1 + exp{x ′0iβ})a0

.
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Figure: Contours of the Power Prior for a0 = 0.07, 0.17,
0.50

The centers of the power priors remain the same for different a0 values.

The tails of the power priors become heavier and the prior surfaces are
getting flatter, as a0 becomes smaller.
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Normalized Power Priors

Assuming that a0 is random, the normalized power prior (Duan, Ye, and
Smith, 2006; Neuenschwander et al., 2009) of θ for the current study is
defined as

π(θ, a0|D0) = π(θ|D0, a0)π(a0) =
L(θ|D0)a0π0(θ)∫
L(θ|D0)a0π0(θ)dθ

π0(a0),

where π0(θ) is an initial prior and π(a0) is a marginal prior for a0.

For the normalized power prior, we must have∫
L(θ|D0)a0 π0(θ)dθ <∞

for 0 < a0 ≤ 1.

Ibrahim, Chen, Xia, and Liu (2012, Biometrics) propose the partial
borrowing power prior.

Hobbs et al. (2011, Biometrics; 2012, Bayesian Analysis) propose the
hierarchical commensurate and power prior.
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HPD Region

For parameter θ with the probability density function f (θ), the
100(1− α)% HPD region is the subset of the parameter space Θ such
that

R(α) = {θ ∈ Θ : f (θ) ≥ fα},
where fα is the largest constant such that P(θ ∈ R(α)) ≥ 1− α.

Theorem: For log-concave densities, the 100(1− α)% HPD region is a
closed convex set.
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Notation

Let π(θ|data) ∝ L(θ|D)π(θ) denote the posterior distribution given the
data D, where L(θ|D) and π(θ) are the likelihood function and a prior
distribution.

The 100(1− α)% HPD region for θ based on the prior distribution is
then defined as

R1(α) =
{
θ ∈ Θ : π(θ) ≥ π1

α

}
,

where π1
α is the largest constant such that P(θ ∈ R1(α)) ≥ 1− α.

Similarly, the 100(1− α)% HPD region for θ based on the posterior
distribution is given by

R2(α) =
{
θ ∈ Θ : π(θ|D) ≥ π2

α

}
,

where π2
α is the largest constant such that P(θ ∈ R2(α)) ≥ 1− α.
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Information I

Our measure I is based on the comparison of V (R1(α)) and V (R2(α)),
where V (·) represents the volume.

Definition 1: Let φ = V (R1(α))/V (R2(α)). The information I is defined
as:

I = log φ = log
V (R1(α))

V (R2(α))
.

prior
posterior

(a) No Information

prior
posterior

(b) Positive Information

prior
posterior

(c) Negative Information
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Dissonance D

Definition 2: For R1(α) and R2(α), let Rmin(α) denote the region with
smaller volume and Rmax(α) denote the larger one. The dissonance D is
measured as the fraction of the volume of the smaller HPD region that is
not overlapping with the larger HPD region, i.e.,

D =
V (Rmin(α) ∩ Rmax(α))

V (Rmin(α))
, (1)

where Rmin(α) ∩ Rmax(α) = {θ ∈ Θ : θ ∈ Rmin(α),θ /∈ Rmax(α)} .

prior
posterior

(d) No Dissonance

prior
posterior

(e) Partial Dissonance

prior
posterior

(f) Complete Dissonance
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Comparing Two Data Sets or Two Posterior Distributions

The two new measures I and D can be extended to compare two data
sets or two posterior distributions given that the the parameter spaces are
assumed to be the same.

We can simply let R1(α) and R2(α) be the HPD regions computed under
the two posterior distributions corresponding to two data sets using the
same prior or corresponding to two prior distributions using the same data
set.
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Choice of α

The values of I and D depend on the content level α.

In practice, we need to choose α such that we consider using a
100(1− α)% HPD region to represent a set of plausible values.

For our measure I, one common choice is α = 0.05, i.e., using the 95%
HPD region.

We can also compute I for different α values to get overall conclusion.

Our measure D is more sensitive to the choice of α.

Instead of fixing a value of α, we plot the curve of D versus α and
summarize the extent of conflict using area under the curve (d−AUC),
with smaller value suggesting that two data sets/two distributions are
compatible and larger value indicating contradiction in the range of [0, 1].
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Application to Pediatric Cancer Data

The data are from Ye et al. (Pharmaceutical Statistics, 2020, DOI:
10.1002/pst.2039).

Examine the effect of NDA22068 Nilotinib for pediatric patients.

The outcome variable is the major molecular response (MMR:
BCRABL/ABL ≤ 0.1% IS).

The data: D0 = (nA = 282, yA = 125) for adult patients and
D = (nP = 25, yP = 15) for pediatric patients.

Assume that yA ∼ B(nA, p) and yP ∼ B(nP , p).

Consider the power using DA as the “historical data”:

π(p) ∝ p−1(1− p)−1

π(p|D0,D, a0) ∝ π(p)[L(p|D0)]a0L(p|D)

∼ Beta(a0yA + yP , a0(nA − yA) + (nP − yP))

The range of a0 is between 0 and 1, with a0 = 0 meaning that no
incorporation of Adult data.

We compare π(p|D0,D, a0) to π(p|D0,D, a0 = 0) via D and I.
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Plots of D versus α for 2 choices of a0
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Plots of d-AUC and I over different choices of a0
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Posterior distributions of Pediatric Data Only versus
Borrowing
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Wei, S., Chen, M.-H., Kuo. L., and Lewis, P.O. (2020+). Bayesian
Information and Dissonance. under revision for Bayesian Analysis.
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Notation, Historical Data and Hypotheses

n0 and nc : the sample sizes of historical and current control arms; nt
(> nc): the sample size of the test arm. We assume

y0i
i.i.d.∼ N(µc , σ

2
c ), yci

i.i.d.∼ N(µc , σ
2
c ), and yti

i.i.d.∼ N(µt , σ
2
t ),

where µc and σc are the mean and the standard deviation of the control
arm, and µt and σt are the mean and the standard deviation of the test
arm.

Historical data

n0 Mean SD Age

44 -0.18 3.38 4 to 8

The means and standard deviations are in the unit of change in 6-month
NSAA total score.

Hypothesis of interest: H0: δ = µt − µc ≤ 0 versus H1: δ = µt − µc > 0
for a superiority trial comparing test drug with the placebo. δ = the
effect size.

µc , σ2
c , and σ2

t are nuisance parameters.
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Posteriors with the Power Priors and Decision Rule

D0 = (n0, ȳ0, S2
0 ) and D = (nt , ȳt , S2

t , nc , ȳc ,S
2
c ), where ȳ0, ȳc , and ȳt are the

sample means, and S2
0 , S2

c , and S2
t are the sample variances for the historical

data, the control and test arms, respectively.

θ = (µc , σ2
c , µt , σ

2
t )′.

The posterior distribution with the power prior is given by

π(θ|D0,D, a0) ∝ (σ2
t )−

nt
2 exp

{
−

1

2σ2
t

[nt(ȳt − µt)2 + (nt − 1)S2
t ]
}

× (σ2
c )−

nc
2 exp

{
−

1

2σ2
c

[nc (ȳc − µc )2 + (nc − 1)S2
c ]
}

×
(

(σ2
c )−

1
2 exp{−

n0(ȳ0 − µc )2

2σ2
c

}(S2
0 )

n0−3
2 (σ2

c )−
n0−1

2 exp

[
−

(n0 − 1)S2
0

2σ2
c

])a0
π0(θ),

where π0(θ) is an initial prior.

Here, the historical data is borrowed all together via the power prior.
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Posteriors with the Power Priors and Decision Rule
(continued)

A new variation of power prior:

π(θ|D0, a0) ∝
(

(σ2
c )−

1
2 exp{−n0(ȳ0 − µc)2

2σ2
c

}
)a01

×
{

(S2
0 )

n0−3
2 (σ2

c )−
n0−1

2 exp

[
− (n0 − 1)S2

0

2σ2
c

]}a02

π0(θ),

where (n0, ȳ0) and (n0,S
2
0 ) are borrowed by parts with distinct

discounting parameters a01 and a02.

π0(θ) ∝ ( 1
σ2
cσ

2
t

)m, where m = 0 corresponds to a uniform prior, m = 1

corresponds to a reference prior, and m = 3
2

corresponds to Jeffreys’s
prior.

Bayesian Decision Rule:

Reject the null hypothesis of δ ≤ 0 if P(δ > 0|D0,D) > γ, where the
credible level γ is chosen so that when a0 = 0, the overall Type I error
rate is intended to be controlled at 0.025.
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Consequence of Assuming σ2
t = σ2

c on Type I Error
(nt = 50, nc = 25, δ = 0)

When σ2
t < σ2

c , Type I error is inflated. When σ2
t > σ2

c , Type I error is
deflated, leading to loss of power.
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Consequence of Model Assumption on Power (σ2
t = σ2

c?)
(nt = 50, nc = 25, δ = 3.5)

When σ2
t > σ2

c , the equal variance model leads to loss of power.
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Effect of π0(θ) on Bayesian Type I Error without
Borrowing (nt = 50, nc = 25, and µc = 0)
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Bayesian Type I Error and Power with Borrowing (nt = 50,
nc = 25)

Note: the maximum µc to control type I error is about 0.35 for
a01 = a02 = 0.5, and is about 0.18 for a01 = a02 = 1.

Most power gain is achieved by borrowing 50% of historical data.
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Bayesian Type I Error and Power with Conditional Borrowing (nt = 50,

nc = 25, σc = 3.38, σt = 5, ȳ0 = −0.18, S0 = 3.38)

Note: π0(θ) is the uniform prior, δ = 3.5 for the power calculation, and
the borrowing region of 0.5× SE for both mean and SD.

The type I is much smaller.

Again, most power gain is achieved by borrowing 50% of historical data.
29 / 33



Bayesian Type I Error and Power with Borrowing by parts
(nt = 50, nc = 25, ȳ0 = −0.18, S0 = 3.38)
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Discussion

Even with a “non-informative” prior, Bayesian type I error can be
deflated, leading to loss of power.

A mis-specified model may lead to a substantial inflation of type I error
even under non-informative priors.

Historical data can be borrowed by parts.

Conditional borrowing or partial borrowing can further protect type I error.
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Thank you !
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