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Introduction
Increased interest among practitioners in computing the probability of having a
successful clinical trial

Framework: Chuang-Stein (Pharmaceutical Statistics 2006)

Standard methods to compute sample size rely on statistical power

Power is a conditional value

Power is not the probability of a successful clinical trial

Probability of success (POS) is the expected value of power with respect to a specified
distribution for the effect size:

POS =

∫
P(Trial meets success critera|∆)p(∆|D)d∆
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Case study
Phase 2 trial of Ivacaftor in subjects with cystic fibrosis (Vertex Pharmaceuticals,
2007-12)

Primary objectives were to assess safety and dose tolerance, but some efficacy
endpoints measured

Phase 2 data suggested treatment efficacious, but sample size was very small
Phase 3 trial conducted 2012-15:

Primary endpoint: Absolute change from baseline in percent predicted forced expiratory
volume in 1 Second (FEV1)
Key secondary endpoints:

Change from baseline in sweat chloride
Change from baseline in Cystic Fibrosis Questionnaire-Revised (CFQ-R) respiratory domain
score

Key question: How can we exploit this phase 2 data to find a sample size that
yields a high probability of success in a Phase 3 trial across the endpoints?
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Seemingly Unrelated Regression (SUR)

SUR Model

yi = Xiβ + ui

ui
ind∼ NJ(0,Σ), Σ ∈ RJ×J

yi = (yi1, . . . , yiJ)′ ∈ RJ

Xi = blkdiag
{

x ′i1, . . . , x ′iJ
}
∈ RJ×p, p =

∑J
j=1 pj

β = (β′1, . . . ,β′J)′ ∈ Rp

Most general multivariate normal linear model

Allows each response to have its own set of covariates
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Copula regression

Gaussian copula regression model

zi ∼ NJ(0,Γ)

yij = F−1
j (Φ(zij)|θ,xij)

Fj(·) is the CDF for the j th margin

If the j th margin is a GLM, θ = (β′, τ), where τ = 1 in some cases

xij is a vector of covariates for subject i and endpoint j , i = 1, . . . , n, j = 1, . . . , J

Explicitly models the correlation between endpoints of possibly mixed types

Equivalent to SUR model if all endpoints are normally distributed
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POS Algorithm
Sample covariate
parameters from

π
(v)
1 (α|x0)

Sample response
parameters from

π
(v)
2 (θ|y0)

Generate future
data set (Y ,X)

Obtain sample from

p(θ|Y ,X)

Compute p̂ = proportion of θ′s
sampled that satsify ”success”.

Output 1 if p̂ ≥ γ and 0 otherwise

Obtain p-value of
generated data set

Output 1 if p-value <
1 − γ and 0 otherwise

Repeat B times;

POS = average
of B indicators

B
ay
es
ia
n

Frequentist
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A note on small historical data sets
For rare diseases, Phase II sample sizes are typically very small

Implausible treatment effects may be sampled if the sample size is too low

There are several possible adjustments one can make:

1 Restrict samples for efficacy in the treatment effect: Bayesian conditional expected power

2 Use informative priors for treatment effects

3 Restrict samples of treatment effects to the qth highest posterior density (HPD) region for
some 0 <q <1.

We focus on (3) and propose two different mechanisms:

1 HPD region of all parameters

2 HPD region of only treatment effects estimated using KDE

Alt, Psioda, and Ibrahim Multivariate Bayesian POS September 25, 2020 6 / 15



The simulated trial
n0 = n1 = 8

E(∆yij) = β0j + β1jzi + x ′ijβ2j

β1 = (6.4,3.5,−49.1)′

diag(Σ) = (5.12,7.05,12.27)′

(ρ12, ρ13, ρ23) = (0.25,−0.25,−0.33)

For all outcomes, xij includes an intercept term, linear and square terms of age, weight,
BMI, and sex

Baseline levels for FEV1 and CFQ-R score are controlled for in their regressions

Power computations yield ñ1 = 22, ñ2 = 176, and ñ3 = 14 for 90% power
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POS simulation
The notion of "success" can be generalized to a set

Ω1 := {θ | β11 >0}
Ω2 := {θ | β12 <0}
Ω3 := {θ | β13 >0}

Ω1j := Ω1 ∩ Ωj , j = 1,2

Ω123 = Ω1 ∩ Ω2 ∩ Ω3 (complete success)

Ω1|23 = Ω1 ∩ (Ω2 ∪ Ω3)
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∆ FEV1 and ∆ CFQ-R ∆ FEV1 and ∆ Sweat
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Power and Type I Error Rate
In order to understand the increase in success, we must characterize the type I error
rate of the method

Amend the posterior samples of the historical data

π̃(v)(θ|D0) ∝ π(v)(θ|D0)I(θ ∈ Θ) (1)
Three important Θ’s:

1 Boundary null:
ΘB = {θ|β12 = 0 ∩ β13 = 0} (for example)

2 Bayesian conditional expected power:
ΘH1 = {θ|β11 >0 ∩ {β12 <0 ∪ β13 >0}}

3 Bayesian type I error:
ΘH0 = ΘH1 = {θ|{β11 ≤ 0} ∪ {β12 ≥ 0 ∪ β13 ≤ 0}}
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Conclusion
Only POS method that considers multiple endpoints

Fully Bayesian approach to jointly model multivariate LMs and GLMs

Unifies hypothesis testing into one framework

Interpretation far simpler than frequentist methods

Useful whether a frequentist or Bayesian analysis will be used

Methods of Ibrahim et al. and Chaung-Stein can be seen as special cases

R packages available on CRAN: surbayes and bayescopulareg
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