Bayesian multivariate probability of success with applications to rare diseases

Ethan M. Alt*

September 25, 2020

Introduction

- Increased interest among practitioners in computing the probability of having a successful clinical trial
- Framework: Chuang-Stein (*Pharmaceutical Statistics* 2006)
- Standard methods to compute sample size rely on statistical power
 - Power is a conditional value
 - Power is not the probability of a successful clinical trial
- Probability of success (POS) is the expected value of power with respect to a specified distribution for the effect size:

$$\mathsf{POS} = \int P(\mathsf{Trial} \; \mathsf{meets} \; \mathsf{success} \; \mathsf{critera}|\Delta) p(\Delta|D) d\Delta$$

Alt, Psioda, and Ibrahim Multivariate Bayesian POS September 25, 2020 1 / 15

Case study

- Phase 2 trial of Ivacaftor in subjects with cystic fibrosis (Vertex Pharmaceuticals, 2007-12)
- Primary objectives were to assess safety and dose tolerance, but some efficacy endpoints measured
- Phase 2 data suggested treatment efficacious, but sample size was very small
- Phase 3 trial conducted 2012-15:
 - Primary endpoint: Absolute change from baseline in percent predicted forced expiratory volume in 1 Second (FEV1)
 - Key secondary endpoints:
 - Change from baseline in sweat chloride
 - Change from baseline in Cystic Fibrosis Questionnaire-Revised (CFQ-R) respiratory domain score
- **Key question:** How can we exploit this phase 2 data to find a sample size that yields a high probability of success in a Phase 3 trial across the endpoints?

Seemingly Unrelated Regression (SUR)

SUR Model

$$egin{aligned} oldsymbol{y}_i &= oldsymbol{X}_ieta + oldsymbol{u}_i \ egin{aligned} oldsymbol{u}_i &= oldsymbol{X}_j(oldsymbol{0}, oldsymbol{\Sigma}), \quad oldsymbol{\Sigma} \in \mathbb{R}^{J imes J} \ oldsymbol{y}_i &= (y_{i1}, \dots, y_{iJ})' \in \mathbb{R}^J \ oldsymbol{X}_i &= ext{blkdiag} \left\{ oldsymbol{x}_{i1}', \dots, oldsymbol{x}_{iJ}'
ight\} \in \mathbb{R}^{J imes p}, \quad oldsymbol{p} &= \sum_{j=1}^J oldsymbol{p}_j \ oldsymbol{\beta} &= (oldsymbol{\beta}_1', \dots, oldsymbol{\beta}_J')' \in \mathbb{R}^p \end{aligned}$$

- Most general multivariate normal linear model
- Allows each response to have its own set of covariates

Copula regression

Gaussian copula regression model

$$m{z}_i \sim N_J(0, \Gamma) \ y_{ij} = F_j^{-1}(\Phi(z_{ij})|m{ heta}, m{x}_{ij})$$

- $F_j(\cdot)$ is the CDF for the j^{th} margin
- If the j^{th} margin is a GLM, $\theta = (\beta', \tau)$, where $\tau = 1$ in some cases
- **x**_{ij} is a vector of covariates for subject i and endpoint j, i = 1, ..., n, j = 1, ..., J
- Explicitly models the correlation between endpoints of possibly mixed types
- Equivalent to SUR model if all endpoints are normally distributed

Alt, Psioda, and Ibrahim Multivariate Bayesian POS September 25, 2020 4 / 15

POS Algorithm

A note on small historical data sets

- For rare diseases, Phase II sample sizes are typically very small
- Implausible treatment effects may be sampled if the sample size is too low
- There are several possible adjustments one can make:
 - 1 Restrict samples for efficacy in the treatment effect: Bayesian conditional expected power
 - Use informative priors for treatment effects
 - Restrict samples of treatment effects to the q^{th} highest posterior density (HPD) region for some 0 < q < 1.
- We focus on (3) and propose two different mechanisms:
 - HPD region of all parameters
 - 2 HPD region of only treatment effects estimated using KDE

The simulated trial

- $n_0 = n_1 = 8$
- $\blacksquare E(\Delta y_{ij}) = \beta_{0j} + \beta_{1j}z_i + \mathbf{x}'_{ij}\beta_{2j}$
- $\beta_1 = (6.4, 3.5, -49.1)'$
- \bullet diag(Σ) = (5.12, 7.05, 12.27)'
- $(\rho_{12}, \rho_{13}, \rho_{23}) = (0.25, -0.25, -0.33)$
- For all outcomes, \mathbf{x}_{ij} includes an intercept term, linear and square terms of age, weight, BMI, and sex
- Baseline levels for FEV1 and CFQ-R score are controlled for in their regressions
- Power computations yield $\tilde{n}_1 = 22$, $\tilde{n}_2 = 176$, and $\tilde{n}_3 = 14$ for 90% power

POS simulation

■ The notion of "success" can be generalized to a set

$$egin{aligned} \Omega_1 &:= \{ heta \mid eta_{11} > 0 \} \ \Omega_2 &:= \{ heta \mid eta_{12} < 0 \} \ \Omega_3 &:= \{ heta \mid eta_{13} > 0 \} \end{aligned}$$

$$lacksquare$$
 $\Omega_{1j} := \Omega_1 \cap \Omega_j, j = 1, 2$

$$\square$$
 $\Omega_{123} = \Omega_1 \cap \Omega_2 \cap \Omega_3$ (complete success)

POS for Δ FEV1

POS for Primary and one Secondary Endpoint

POS for Complete Success

Power and Type I Error Rate

- In order to understand the increase in success, we must characterize the type I error rate of the method
- Amend the posterior samples of the historical data

$$\tilde{\pi}^{(\nu)}(\theta|D_0) \propto \pi^{(\nu)}(\theta|D_0)I(\theta \in \Theta)$$
 (1)

- Three important Θ's:
 - Boundary null:

$$\Theta_B = \{\theta | \beta_{12} = 0 \cap \beta_{13} = 0\}$$
 (for example)

- Bayesian conditional expected power: $\Theta_{H_1} = \{\theta | \beta_{11} > 0 \cap \{\beta_{12} < 0 \cup \beta_{13} > 0\}\}$
- Bayesian type I error: $\Theta_{H_0} = \overline{\Theta}_{H_1} = \{\theta | \{\beta_{11} \leq 0\} \cup \{\beta_{12} \geq 0 \cup \beta_{13} \leq 0\}\}$

Power and Type I Error for Primary and ≥ 1 Secondary

Conclusion

- Only POS method that considers multiple endpoints
- Fully Bayesian approach to jointly model multivariate LMs and GLMs
- Unifies hypothesis testing into one framework
- Interpretation far simpler than frequentist methods
- Useful whether a frequentist or Bayesian analysis will be used
- Methods of Ibrahim et al. and Chaung-Stein can be seen as special cases
- R packages available on CRAN: surbayes and bayescopulareg

