Bayesian multivariate probability of success with applications to rare diseases

Ethan M. Alt*

September 25, 2020

Introduction

\square Increased interest among practitioners in computing the probability of having a successful clinical trial

- Framework: Chuang-Stein (Pharmaceutical Statistics 2006)
- Standard methods to compute sample size rely on statistical power
- Power is a conditional value
- Power is not the probability of a successful clinical trial
- Probability of success (POS) is the expected value of power with respect to a specified distribution for the effect size:

$$
\mathrm{POS}=\int P(\text { Trial meets success critera } \mid \Delta) p(\Delta \mid D) d \Delta
$$

Case study

- Phase 2 trial of Ivacaftor in subjects with cystic fibrosis (Vertex Pharmaceuticals, 2007-12)
■ Primary objectives were to assess safety and dose tolerance, but some efficacy endpoints measured
■ Phase 2 data suggested treatment efficacious, but sample size was very small
- Phase 3 trial conducted 2012-15:

■ Primary endpoint: Absolute change from baseline in percent predicted forced expiratory volume in 1 Second (FEV1)

- Key secondary endpoints:
- Change from baseline in sweat chloride
- Change from baseline in Cystic Fibrosis Questionnaire-Revised (CFQ-R) respiratory domain score
- Key question: How can we exploit this phase 2 data to find a sample size that yields a high probability of success in a Phase 3 trial across the endpoints?

Seemingly Unrelated Regression (SUR)

SUR Model

$$
\begin{aligned}
\boldsymbol{y}_{i} & =\boldsymbol{X}_{i} \boldsymbol{\beta}+\boldsymbol{u}_{i} \\
\boldsymbol{u}_{i} & \stackrel{\text { ind }}{\sim} N_{J}(\mathbf{0}, \boldsymbol{\Sigma}), \quad \boldsymbol{\Sigma} \in \mathbb{R}^{J \times J} \\
\boldsymbol{y}_{i} & =\left(y_{i 1}, \ldots, \boldsymbol{y}_{i J}\right)^{\prime} \in \mathbb{R}^{J} \\
\boldsymbol{x}_{i} & =\operatorname{blkdiag}\left\{\boldsymbol{x}_{i 1}^{\prime}, \ldots, \boldsymbol{x}_{i J}^{\prime}\right\} \in \mathbb{R}^{J \times p}, \quad p=\sum_{j=1}^{J} p_{j} \\
\boldsymbol{\beta} & =\left(\boldsymbol{\beta}_{1}^{\prime}, \ldots, \boldsymbol{\beta}_{J}^{\prime}\right)^{\prime} \in \mathbb{R}^{p}
\end{aligned}
$$

- Most general multivariate normal linear model
- Allows each response to have its own set of covariates

Copula regression

Gaussian copula regression model

$$
\begin{aligned}
\boldsymbol{z}_{i} & \sim N_{J}(0, \Gamma) \\
y_{i j} & =F_{j}^{-1}\left(\Phi\left(z_{i j}\right) \mid \boldsymbol{\theta}, \boldsymbol{x}_{i j}\right)
\end{aligned}
$$

- $F_{j}(\cdot)$ is the CDF for the $j^{t h}$ margin
- If the $j^{\text {th }}$ margin is a GLM, $\boldsymbol{\theta}=\left(\boldsymbol{\beta}^{\prime}, \tau\right)$, where $\tau=1$ in some cases
$\square \boldsymbol{x}_{i j}$ is a vector of covariates for subject i and endpoint $j, i=1, \ldots, n, j=1, \ldots, J$
- Explicitly models the correlation between endpoints of possibly mixed types
- Equivalent to SUR model if all endpoints are normally distributed

POS Algorithm

A note on small historical data sets

■ For rare diseases, Phase II sample sizes are typically very small

- Implausible treatment effects may be sampled if the sample size is too low
- There are several possible adjustments one can make:

1 Restrict samples for efficacy in the treatment effect: Bayesian conditional expected power
2 Use informative priors for treatment effects
3 Restrict samples of treatment effects to the $q^{\text {th }}$ highest posterior density (HPD) region for some $0<q<1$.

- We focus on (3) and propose two different mechanisms:

1 HPD region of all parameters
2 HPD region of only treatment effects estimated using KDE

The simulated trial

- $n_{0}=n_{1}=8$
$\square E\left(\Delta y_{i j}\right)=\beta_{0 j}+\beta_{1 j} z_{i}+\boldsymbol{x}_{i j}^{\prime} \beta_{2 j}$
$\square \boldsymbol{\beta}_{1}=(6.4,3.5,-49.1)^{\prime}$
$\square \operatorname{diag}(\Sigma)=(5.12,7.05,12.27)^{\prime}$
- $\left(\rho_{12}, \rho_{13}, \rho_{23}\right)=(0.25,-0.25,-0.33)$

■ For all outcomes, $\boldsymbol{x}_{i j}$ includes an intercept term, linear and square terms of age, weight, BMI, and sex

- Baseline levels for FEV1 and CFQ-R score are controlled for in their regressions

■ Power computations yield $\tilde{n}_{1}=22, \tilde{n}_{2}=176$, and $\tilde{n}_{3}=14$ for 90% power

POS simulation

- The notion of "success" can be generalized to a set

$$
\begin{aligned}
& \Omega_{1}:=\left\{\boldsymbol{\theta} \mid \beta_{11}>0\right\} \\
& \Omega_{2}:=\left\{\boldsymbol{\theta} \mid \beta_{12}<0\right\} \\
& \Omega_{3}:=\left\{\boldsymbol{\theta} \mid \beta_{13}>0\right\}
\end{aligned}
$$

$\square \Omega_{1 j}:=\Omega_{1} \cap \Omega_{j}, j=1,2$
$■ \Omega_{123}=\Omega_{1} \cap \Omega_{2} \cap \Omega_{3}$ (complete success)
$\square \Omega_{1 \mid 23}=\Omega_{1} \cap\left(\Omega_{2} \cup \Omega_{3}\right)$

POS for $\Delta \mathrm{FEV} 1$

Method

- Bayesian
--- Frequentist
b_{0}
0.5
-0.75
-1

Adjustment

- No adjustment
- Posterior
- KDE

IIII

POS for Primary and one Secondary Endpoint

TIT

POS for Complete Success

POS for Primary and ≥ 1 Secondary

Power and Type I Error Rate

- In order to understand the increase in success, we must characterize the type I error rate of the method
- Amend the posterior samples of the historical data
- Three important Θ 's:

$$
\begin{equation*}
\tilde{\pi}^{(v)}\left(\theta \mid D_{0}\right) \propto \pi^{(v)}\left(\theta \mid D_{0}\right) l(\theta \in \Theta) \tag{1}
\end{equation*}
$$

1 Boundary null:
$\Theta_{B}=\left\{\theta \mid \beta_{12}=0 \cap \beta_{13}=0\right\}$ (for example)
2 Bayesian conditional expected power:

$$
\Theta_{H_{1}}=\left\{\theta \mid \beta_{11}>0 \cap\left\{\beta_{12}<0 \cup \beta_{13}>0\right\}\right\}
$$

3 Bayesian type I error:

$$
\Theta_{H_{0}}=\bar{\Theta}_{H_{1}}=\left\{\theta \mid\left\{\beta_{11} \leq 0\right\} \cup\left\{\beta_{12} \geq 0 \cup \beta_{13} \leq 0\right\}\right\}
$$

Power and Type I Error for Primary and ≥ 1 Secondary

Conclusion

■ Only POS method that considers multiple endpoints

- Fully Bayesian approach to jointly model multivariate LMs and GLMs

■ Unifies hypothesis testing into one framework

- Interpretation far simpler than frequentist methods
- Useful whether a frequentist or Bayesian analysis will be used

■ Methods of Ibrahim et al. and Chaung-Stein can be seen as special cases

- R packages available on CRAN: surbayes and bayescopulareg

