Knowledge-Guided Statistical Learning Methods for Analysis of High-Dimensional Omics Data in Precision Medicine

Qi Long, Ph.D.

University of Pennsylvania September 24, 2020

Background

- Generation of high-dimensional -omics data such as genomics, transcriptomics, and metabolomics data offers great promises in advancing precision medicine
 - insights about heterogeneity in disease risk/prognosis and in treatment response
 - also present significant analytical challenges.
- Complex diseases are often multifactorial that may be attributed to harmful changes on multiple (omics) levels and on pathway level.
 - heterogeneity
 - aggregated signal in pathway can be considerably stronger
- Vast majority of existing statistical learning methods are entirely data driven
 - fail to incorporate biological knowledge

Biological Information/Knowledge

- Ever-deepening knowledge about biological functions and interactions of genes, gene products, and other –omics features
 - Gene regulatory networks
 - Gene co-expression networks
 - Protein-Protein interaction networks
 - Metabolic pathways
- Such biological knowledge can be represented by
 - Graph: $G = \langle V, E \rangle$
 - V: the set of nodes such as genes, proteins, metabolites etc.
 - E: the set of edges representing functional interactions between nodes

Signaling pathways in glioblastoma

Biological Information/Knowledge

Database	Full Name	Knowledge	
KEGG	Kyoto Encyclopedia of Genes and Genomes	Metabolic pathways	
REACTOME	Reactome Pathway Database	Metabolic & signaling pathways	
Mummichog	Mummichog	Metabolomic pathway	
Metabolome.jp	Metabolome.jp	Metabolic pathways	
MetaCyc	Metabolic Pathways From all Domains of Life	Metabolic pathways	
Invitrogen iPath	Invitrogen iPath	Metabolic pathways	
BioCyc	BioCyc Pathway/Genome Database Collection	Metabolic pathways	
IPKB	Ingenuity Pathways Knowledge Base	Gene regulatory & signaling pathways	
TRANSPATH	TRANSPATH	Gene regulatory & signaling pathways	
CST	Cell Signaling Technology Pathway	Signaling pathways	
TargetScan	TargetScan	gene-microRNA regulatory network	
miRBase	miRBase: the microRNA database	gene-microRNA regulatory network	
PicTar	Probabilistic identification of combinations of target sites	gene-microRNA regulatory network	
miRDB	miRDB	gene-microRNA regulatory network	
mirDIP	microRNA Data Integration Portal	gene-microRNA regulatory network	
BioGRID	Biological General Repository for Interaction Datasets	Protein and genetic interactions	
HuRI (Luck, 2020)	Reference interactome map of human binary protein interactions	Protein-Protein Interactions	

Knowledge-guided Statistical Learning Methods

- Leverage information in $G = \langle V, E \rangle$
- Improve the power of detecting weak, yet important signals:
 - signal from individual –omics feature can be weak and challenging to detect with a small/moderate sample size
 - in aggregate, signal from a pathway would be easier to detect with same sample size
- Yield biologically more interpretable and meaningful results
 - encourage selection of pathways vs individual features
 - deeper insights about molecular mechanism of complex diseases
 - heterogeneity
- Facilitate integration of multi-omics data through the incorporation of biological knowledge about functional relationships between different modalities.

Knowledge-guided Statistical Learning Methods

- Knowledge-guided supervised learning methods
 - Construct prediction models for disease risk/progression or treatment response
 - identify higher risk group
 - tailor interventions to individual patients: heterogeneity of treatment effects
 - Uncover molecular signatures predictive of disease risk/progression, or treatment response
 - inform novel targets for therapeutic development
- Knowledge-guided unsupervised learning methods
 - Biclustering: identify disease subgroups and important pathways associated with each subgroup.
 - Identification of subgroups related to molecular differences
 - offer insights about optimizing treatment strategy for each subgroup
 - important step toward developing a precision medicine approach for complex diseases.

- Knowledge-guided linear regression model
 - Y: clinical outcome of interest
 - X: a set of high-dimensional omics features/predictors
 - T: treatment variable (optional)
 - G=<V, E>: the graph containing the biological knowledge about X
 - V: the set of nodes (i.e., omics features)
 - E: the set of edges (functional relationship)
 - To incorporate G=<V, E>
 - Frequentist framework: penalty for β
 - Bayesian framework: prior distribution for β ; straightforward for statistical inference and uncertainty quantification for estimation and prediction

- Penalties in Frequentist Framework:
 - Network constrained penalty (Li and Li, 2009)
 - More accurate prediction for time to death among glioblastoma patients using microarray gene expression
 - Identified gene subnetworks that were highly correlated with survival time
 - <u>Implication in precision medicine</u>: identified gene signatures provide insights about molecular underpinning of prognosis and potential therapeutic target
 - Grouped penalty based on L_r -norm (Pan et al., 2010)
 - Hierarchical group penalty (Zhao et al., 2016)
 - More accurate prediction for prostate cancer recurrence after prostatectomy
 - <u>Implication in precision medicine</u>: help determine whether adjuvant therapy is needed after surgery for individual patients.

- Prior Specifications in Bayesian Framework:
 - Spike and slab prior combined with Markov random field (or Ising) prior (Li and Zhang, 2010): scalability for ultra-high dimensional features (?)
 - Structured adaptive shrinkage prior (Chang et al., 2018)
 - Computationally scalable to 100,000's or millions of –omics features
 - More accurate prediction for overall survival in glioblastoma patients
 - Identified a set of risk genes along with enriched pathways
 - <u>Implication in precision medicine</u>: identified gene signatures provide insights about molecular underpinning of prognosis and potential therapeutic target
- Other knowledge-guided supervised learning methods:
 - SVM methods (Sun et al. 2019)
 - LDA methods (Safo et al. 2019)

- Bayesian generalized biclustering analysis (Li et al. 2019)
 - <u>Step A</u>: Integrate data from H omics modalities, X₁, ..., X_H (continuous and discrete)
 - Step B: X is linked to loading W and latent factors Z.
 - Step C and D: Prior for W and Z, respectively.
 - <u>Step E</u>: Prior for incorporating biological knowledge.
 - <u>Step F</u>: Biclusters identified in the product **W*Z** provides insights on disease subgroups and associated molecular signatures.
 - Subgroups can be correlated with heterogeneous treatment response

- Biclustering: Li et al. (2019)
 - Integrative analysis of gene expression data, DNA methylation data, and DNA copy number data from a TCGA glioblastoma dataset
 - Subgroups identified had a higher correlation with survival outcome than those by other biclustering methods that do not use biological information
 - Analysis of two -omics datasets from AMP-AD
 - This new method outperforms existing biclustering methods in terms of identifying clinical subgroups including AD, asymptomatic AD, progressive supranuclear palsy, pathologic aging, and cognitive normal (CN).
- Dimension Reduction and Feature Engineering
 - PCA (Li et al., 2017)
 - CCA (Safo et al., 2018)
 - CIA (Min et al., 2018, 2020)

Software Tools

Supervised Learning	R	Graph-constrained regularization for both sparse linear regression and sparse logistic regression	Li and Li (2008) ⁸ Sun et al (2014) ¹⁴
	R	Fused lasso	Tibshirani et al (2005) ³⁵
	R	Incorporating Predictor Network in Penalized Regression with Application to Microarray Data	Pan et al (2010) ⁹
	Matlab	Network-based penalized regression with application to genomic data	Kim et al (2013) ¹⁵
	R	Scalable Bayesian variable selection for structured high-dimensional data	Chang et al (2018) ¹⁰
	Matlab	Sparse knowledge-guided LDA	Safo et al (2016) ¹⁸
	Matlab	Incorporating Biological Information into Linear Models: A Bayesian Approach to the Selection of Pathways and Genes	Stingo et al (2011) ²⁴
	Matlab	Joint network and node selection for pathway-based genomic data analysis	Zhe et al (2014) ¹¹
Unsupervised Learning	Matlab	Sparse knowledge-guided PCA	Li et al (2017) ¹²
	Matlab	Sparse knowledge-guided CCA	Safo et al (2018) ³⁶
	R	Sparse knowledge-guided CIA	Min et al (2018) ³⁷
	Matlab	A network-assisted co-clustering algorithm to discover cancer subtypes based on gene expression	Liu et al (2014) ³¹

Discussions

- The knowledge-guided strategy has been shown to
 - enhance analysis power
 - yield biologically more interpretable and meaningful results
- Bayesian methods enable straightforward statistical inference and uncertainty quantification for estimation and prediction
- While substantial progress has been made in the development of knowledge-guided statistical learning methods
 - promote the use of these methods in modeling treatment heterogeneity using high-dimensional —omics data
 - still much room for further methodological developments and improvements

Future Research

- Assess robustness of knowledge-guided methods to misspecification of biological knowledge
 - In practice biological knowledge from existing databases is known to be incomplete and include false edges
 - Some knowledge-guided learning methods (Chang et al. 2018) have been shown to be robust.
- Combine knowledge-guided methods with learning biological graph G from observed data: an integrative analysis approach
- Scalable methods for analysis of big -omics data that can have hundreds of thousands of or even millions of features
 - More research on efficient computation algorithms is needed.

References

- Zhao, Y, Chang, C and Long, Q, (2019) Knowledge-guided statistical learning methods for analysis of high-dimensional-omics data in precision oncology. <u>JCO Precision Oncology</u>, 3, pp.1-9.
 - References in Zhao et al. (2019)
- Luck, K., Kim, D.K., Lambourne, L., Spirohn, K., Begg, B.E., Bian, W., Brignall, R., Cafarelli, T., Campos-Laborie, F.J., Charloteaux, B. and Choi, D., 2020. A reference map of the human binary protein interactome. *Nature*, 580(7803), pp.402-408.

Thank you!