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Background

* Generation of high-dimensional -omics data such as genomics,
transcriptomics, and metabolomics data offers great promises in
advancing precision medicine

* insights about heterogeneity in disease risk/prognosis and in treatment
response

* also present significant analytical challenges.

* Complex diseases are often multifactorial that may be attributed to
harmful changes on multiple (omics) levels and on pathway level.

* heterogeneity
* aggregated signal in pathway can be considerably stronger

. Xa_st majority of existing statistical learning methods are entirely data
riven

e fail to incorporate biological knowledge



Biological Information/Knowledge

* Ever-deepening knowledge about biological functions and
interactions of genes, gene products, and other —omics features

* Gene regulatory networks

* Gene co-expression networks

* Protein-Protein interaction networks
* Metabolic pathways

 Such biological knowledge can be represented by
e Graph: G =< V,E >
 V: the set of nodes such as genes, proteins, metabolites etc.
* E: the set of edges representing functional interactions between nodes



Signaling pathways in glioblastoma
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Biological Information/Knowledge

S hiiName | Knowledge

I

Kyoto Encyclopedia of Genes and Genomes Metabolic pathways

Reactome Pathway Database Metabolic & signaling pathways
W Mummichog Metabolomic pathway
Metabolome.jp Metabolic pathways
Metabolic Pathways From all Domains of Life Metabolic pathways
Invitrogen iPath Metabolic pathways
BioCyc Pathway/Genome Database Collection Metabolic pathways
m Ingenuity Pathways Knowledge Base Gene regulatory & signaling pathways
TRANSPATH Gene regulatory & signaling pathways

CST Cell Signaling Technology Pathway Signaling pathways
TargetScan gene-microRNA regulatory network
miRBase: the microRNA database gene-microRNA regulatory network
Probabilistic identification of combinations of target sites gene-microRNA regulatory network
miRDB gene-microRNA regulatory network
m microRNA Data Integration Portal gene-microRNA regulatory network
Biological General Repository for Interaction Datasets Protein and genetic interactions
Reference interactome map of human binary protein interactions Protein-Protein Interactions



Knowledge-guided Statistical Learning Methods

* Leverage informationinG =< V,E >

* Improve the power of detecting weak, yet important signals:

* signal from individual —omics feature can be weak and challenging to detect
with a small/moderate sample size

* in aggregate, signal from a pathway would be easier to detect with same
sample size

* Yield biologically more interpretable and meaningful results
* encourage selection of pathways vs individual features
» deeper insights about molecular mechanism of complex diseases
* heterogeneity

* Facilitate integration of multi-omics data through the incorporation of
biological knowledge about functional relationships between
different modalities.



Knowledge-guided Statistical Learning Methods

* Knowledge-guided supervised learning methods

 Construct prediction models for disease risk/progression or treatment
response

* identify higher risk group
* tailor interventions to individual patients: heterogeneity of treatment effects

* Uncover molecular signatures predictive of disease risk/progression, or
treatment response

* inform novel targets for therapeutic development

* Knowledge-guided unsupervised learning methods

 Biclustering: identify disease subgroups and important pathways associated
with each subgroup.
* |dentification of subgroups related to molecular differences
 offer insights about optimizing treatment strategy for each subgroup

* important step toward developing a precision medicine approach for complex
diseases.



Knowledge-guided Supervised Statistical Learning Methods

* Knowledge-guided linear regression model

Y: clinical outcome of interest

X: a set of high-dimensional omics features/predictors

T: treatment variable (optional)

G=<V, E>: the graph containing the biological knowledge about X
* V: the set of nodes (i.e., omics features)
* E: the set of edges (functional relationship)

To incorporate G=<V, E>
* Frequentist framework: penalty for 8

» Bayesian framework: prior distribution for B; straightforward for statistical inference and
uncertainty quantification for estimation and prediction



Knowledge-guided Supervised Statistical Learning Methods

T: treatment (optional) oy . : ok
[ X: omics predictors Vi=Bx;+ ol +yTi = f(Bx) + e}

A

Y

{Biologca Knowledgew \( penalty for B (Frequentist) }

G=<V,E > J 3 prior for B (Bayesian)




Knowledge-guided Supervised Statistical Learning Methods

* Penalties in Frequentist Framework:

* Network constrained penalty (Li and Li, 2009)

* More accurate prediction for time to death among glioblastoma patients using
microarray gene expression
* |Identified gene subnetworks that were highly correlated with survival time

* Implication in precision medicine: identified gene signatures provide insights
about molecular underpinning of prognosis and potential therapeutic target

* Grouped penalty based on L,.-norm (Pan et al., 2010)

* Hierarchical group penalty (Zhao et al., 2016)
* More accurate prediction for prostate cancer recurrence after prostatectomy

* Implication in precision medicine: help determine whether adjuvant therapy is
needed after surgery for individual patients.




Knowledge-guided Supervised Statistical Learning Methods

* Prior Specifications in Bayesian Framework:

» Spike and slab prior combined with Markov random field (or Ising) prior (Li
and Zhang, 2010): scalability for ultra-high dimensional features (?)

 Structured adaptive shrinkage prior (Chang et al., 2018)
* Computationally scalable to 100,000’s or millions of —omics features
* More accurate prediction for overall survival in glioblastoma patients
* |dentified a set of risk genes along with enriched pathways

* Implication in precision medicine: identified gene signatures provide insights
about molecular underpinning of prognosis and potential therapeutic target

* Other knowledge-guided supervised learning methods:
* SVM methods (Sun et al. 2019)
* LDA methods (Safo et al. 2019)



Knowledge-guided Unsupervised Statistical Learning Methods

e Bayesian generalized biclustering analysis (Li et al. 2019)

* Step A: Integrate data from H omics modalities, X, ..., X,; (continuous and
discrete)

e Step B: X is linked to loading W and latent factors Z.

e Step C and D: Prior for W and Z, respectively.

 Step E: Prior for incorporating biological knowledge.

 Step F: Biclusters identified in the product W*Z provides insights on disease
subgroups and associated molecular signatures.

e Subgroups can be correlated with heterogeneous treatment response



Xl XL -4— Prior for Z: nn(zy;) < exp(—¢|zy|)
- P W Prior for W: m(wj;) < exp(—4;|wj;|)
XH Prior for A;: A; ~ LN(u, Q¢)
4
Blologlcal Knowledge : G = < P E >

@ Subtypes identified in WZ




Knowledge-guided Unsupervised Statistical Learning Methods

* Biclustering: Li et al. (2019)
* Integrative analysis of gene expression data, DNA methylation data, and DNA
copy number data from a TCGA glioblastoma dataset

» Subgroups identified had a higher correlation with survival outcome than those
by other biclustering methods that do not use biological information

* Analysis of two -omics datasets from AMP-AD

* This new method outperforms existing biclustering methods in terms of
identifying clinical subgroups including AD, asymptomatic AD, progressive
supranuclear palsy, pathologic aging, and cognitive normal (CN).

* Dimension Reduction and Feature Engineering
* PCA (Lietal., 2017)
e CCA (Safo et al., 2018)
* CIA (Min et al., 2018, 2020)



Software Tools

R Graph-constrained regularization for both sparse linear regression Li and Li (2008)32
and sparse logistic regression Sun et al (2014)%
R Fused lasso Tibshirani et al (2005)3
I ting Predictor Network in Penalized R i ith
. ncorporating Pre |c. or. etwor : in Penalized Regression wi Pan et al (2010)°
Application to Microarray Data
: Matlab Network-based penalized regression with application to genomic Kim et al (2013)15
Supervised data
Learnin Scalable B [ iable selection for structured high-di ional
g . calable Bayesian variable selection for structured high-dimensiona Chang et al (2018)19
data
Matlab Sparse knowledge-guided LDA Safo et al (2016)8
Matlab Incorporating Biological Informa.tion into Linear Models: A Bayesian Stingo et al (2011)2¢
Approach to the Selection of Pathways and Genes
Matlab Joint network and node selection fo.r pathway-based genomic Zhe et al (2014)11
data analysis
Matlab Sparse knowledge-guided PCA Li et al (2017)12
. Matlab Sparse knowledge-guided CCA Safo et al (2018)3°
Unsupervised : : 37
. R Sparse knowledge-guided CIA Min et al (2018)
Learning A network-assisted co-clustering algorithm to discover cancer
Matlab Sl Liu et al (2014)3

subtypes based on gene expression



Discussions

* The knowledge-guided strategy has been shown to
e enhance analysis power
* yield biologically more interpretable and meaningful results

* Bayesian methods enable straightforward statistical inference
and uncertainty quantification for estimation and prediction

* While substantialo\orogress has been made in the development of
knowledge-guided statistical learning methods

: Eromote the use of these methods in modeling treatment
eterogeneity using high-dimensional —omics data

* still much room for further methodological developments and
improvements



Future Research

» Assess robustness of knowledge-guided methods to misspecification
of biological knowledge

* In practice biological knowledge from existing databases is known to be
incomplete and include false edges

* Some knowledge-guided learning methods (Chang et al. 2018) have been
shown to be robust.

* Combine knowledge-guided methods with learning biological graph G
from observed data: an integrative analysis approach

 Scalable methods for analysis of big -omics data that can have
hundreds of thousands of or even millions of features

* More research on efficient computation algorithms is needed.
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