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Introduction

Adjusting for population differences is a major challenge in utilizing
real-world data to evaluate medical treatments

We will focus on generalizing clinical trial results to a target population

Existing statistical methods:
Imputation method based on an outcome regression (OR) model
Methods based on a propensity score (PS) model:

weighting
matching
stratification

Doubly robust (DR) methods

involve both OR and PS models
consistent if either model is correct
efficient if both models are correct

Will explore the use of machine learning (ML) methods in this work
ML refers to any method/algorithm that can be used to estimate a
regression function (OR or PS)
Nonparametric ML methods are generally more flexible, though slower
in convergence, than parametric models
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Some Notation

Trial population/cohort

Baseline covariates: W
Potential outcomes: Y (a), a = 0 (control) or 1 (experimental)
Randomized treatment: A = 0 or 1 (independent of all baseline
variables)
Actual outcome: Y = Y (A) (assuming consistency)
Observed data: (Wi ,Ai ,Yi ), i = 1, . . . , n

Target population/cohort

Baseline covariates: W ∗

Potential outcomes: Y ∗(a), a = 0 (control) or 1 (experimental)
Observed data: W ∗i , i = 1, . . . , n∗

Interested in δ∗ = E{Y ∗(1)− Y ∗(0)}, which is generally different
from δ = E{Y (1)− Y (0)}
Assumptions are needed for identification
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Key Assumptions

Any difference between δ and δ∗ can be explained through baseline
covariates, so that

E{Y (1)− Y (0)|W = w} = E{Y ∗(1)− Y ∗(0)|W ∗ = w} =: d(w)

Any patient in the target population could potentially be included in
the trial cohort

Formally, we assume W∗ ⊂ W
For simplicity, we further assume W∗ =W
This is equivalent to

0 < r(w) := f ∗(w)/f (w) <∞,

where f and f ∗ are the density functions of W and W ∗, respectively,
with respect to a common measure

Together, these two assumptions are sufficient for identifying δ∗.
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Existing Methods

Imputation

Estimate δ∗ = E{d(W ∗)} with

δ̂∗imp =
1

n∗

n∗∑
i=1

d̂(W ∗i ),

where d̂ is a generic estimate of d based on {(Wi ,Ai ,Yi ), i = 1, . . . , n}
Weighting

Estimate δ∗ = E{Dr(W )}, where D = AY /π − (1− A)Y /(1− π),
with

δ̂∗wt =
1

n

n∑
i=1

Di r̂(Wi ),

where r̂ is an estimate of r based on {Wi , i = 1, . . . , n} and
{W ∗i , i = 1, . . . , n∗}
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DR method

Motivated by semiparametric theory, a DR estimator of δ∗ may be
constructed as

δ̂∗dr =
1

n∗

n∗∑
i=1

d̂(W ∗i ) +
1

n

n∑
i=1

r̂(Wi )
{
Di − d̂(Wi )− (Ai − π)ĥ(Wi )

}
,

where ĥ(w) is an estimate of

h(w) =
m1(w)

π
+

m0(w)

1− π
= E

(
AY

π2
+

(1− A)Y

(1− π)2

∣∣∣∣W = w

)
δ̂∗dr is consistent if either d̂ or r̂ is consistent

In these methods, estimation of (d , r , h) is usually based on
parametric models
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Proposed Methods

δ̂∗dr with (d̂ , r̂ , ĥ) obtained using statistical ML methods

Questions:√
n-consistent?

Asymptotically normal?
Asymptotically efficient?

We assume there exist limit functions d∞, r∞ and h∞ such that, with
probability 1, d̂(w)→ d∞(w), r̂(w)→ r∞(w) and ĥ(w)→ h∞(w)
for all w ∈ W

So δ̂∗dr is consistent for δ∗ if d∞ = d or r∞ = r (or both), regardless of
h∞

For
√
n-consistency and asymptotic normality, we assume

d∞ = d and r∞ = r
‖d̂ − d‖2‖r̂ − r‖2 = op(n−1/2)

(d̂ , r̂ , ĥ) belong to a Donsker class with probability tending to 1
n∗/n→ λ ∈ (0,∞) as n→∞
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Under these conditions, it can be shown that
√
n(δ̂∗dr − δ∗) converges

to a normal distribution with mean 0 and variance

var[r(W ){D − d(W )− (A− π)h∞(W )}] + λ−1 var{d(W ∗)}

When h∞ = h, the above asymptotic variance becomes the
nonparametric variance bound for estimating δ∗, and δ̂∗dr is then
asymptotically efficient in the nonparametric sense

The rate condition ‖d̂ − d‖2‖r̂ − r‖2 = op(n−1/2) can be satisfied in
a variety of ways

There is a great variety of ML methods available, some of which may
perform better than others in a given application

Multiple candidate ML methods can be combined through
cross-validation into a super learner with a desirable oracle property
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The Donsker condition on (d̂ , r̂ , ĥ) may limit the collection of ML
methods that can be included in the super learner

Sample splitting (aka cross-fitting) has been suggested as a way to
remove the Donsker condition while retaining

√
n-consistency and

asymptotic normality

Partition the sample (trial & target cohorts) into L subsamples that are
roughly equal in size
For each l ∈ {1, . . . , L}, exclude the lth subsample and obtain

(d̂ (−l), r̂ (−l), ĥ(−l)) from the rest of the sample using the same methods

for obtaining (d̂ , r̂ , ĥ)
Estimate δ∗ with

δ̂∗dr.ss =
1

n∗

n∗∑
i=1

d̂ (−l∗i )(W ∗i )

+
1

n

n∑
i=1

r̂ (−li )(Wi )
{
Di − d̂ (−li )(Wi )− (Ai − π)ĥ(−li )(Wi )

}
,

where li (l∗i ) is the index of the subsample that includes the ith subject
in the study (target) cohort
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Application (Aortic Stenosis)

Surgical aortic valve replacement (SAVR) has been the standard of
care

Transcatheter aortic valve replacement (TAVR) is a newer and less
invasive treatment option

A randomized clinical trial (CoreValve) in high-risk patients found an
absolute reduction of 4.9% (95% CI: −0.4 to 10.2%) for TAVR versus
SAVR in the all-cause mortality rate at one year after treatment

There have been questions about the generalizability of the trial
results to the target population of high-risk patients

The target population is better described by the Medicare Provider
and Review (MedPAR) database of the US Centers for Medicare and
Medicaid Services

We are interested in utilizing the MedPAR database together with the
CoreValve trial data to estimate the treatment difference in the target
population
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Table: Summary of baseline characteristics for the trial cohort (by treatment and

overall) and the target cohort in the cardiology example: mean (standard

deviation) for continuous variables and percentage (%) for binary ones.

Patient Trial Cohort Target

Characteristic TAVR SAVR Overall Cohort

n1 = 314 n0 = 286 n = 600 n∗ = 49, 591

age in years 83.6 (6.5) 83.4 (6.2) 83.5 (6.4) 82.7 (7.4)

male sex 52.9 52.1 52.5 51.6

white race 97.1 94.8 96.0 92.9

congestive heart failure 69.7 61.5 65.8 75.2

pulmonary circulation disorder 19.7 18.9 19.3 23.7

chronic pulmonary disease 28.7 26.2 27.5 27.4

hypothyroidism 17.8 16.4 17.1 22.0

renal failure 32.8 29.4 31.2 37.6

frailty percentile 46.2 (27.3) 45.7 (28.9) 46.0 (28.1) 50.8 (28.9)
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Table: Data analysis for the cardiology example: point estimates (standard errors)

of the one-year mortality rates (as percentages) of TAVR and SAVR as well as

their difference (TAVR− SAVR) in the target population.

Method TAVR SAVR Difference

Imputation 13.7 (2.0) 17.0 (2.3) −3.3 (3.2)
Weighting 13.6 (2.0) 17.0 (2.5) −3.3 (3.4)

DR.par 13.6 (2.1) 17.0 (2.4) −3.4 (3.1)
DR.np 13.7 (1.8) 17.3 (2.2) −3.9 (2.9)

DR.np.ss 14.5 (2.1) 18.2 (2.5) −3.3 (2.9)
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Summary

The problem of adjusting for population differences is becoming
increasingly important with increasing use of real-world data for
treatment evaluation

Existing statistical methods for this purpose generally rely on correct
specification of parametric regression models

In this work, we have investigated the use of nonparametric ML
methods to estimate nuisance functions in adjusting for population
differences

Incorporating such ML estimates into the DR method leads to
nonparametric DR estimators that are theoretically justified and
perform well in simulation studies

Future research may address possible violations of key assumptions
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