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• Introduction

• Natural history studies

• Long-term safety evaluation and usage of Real-World Data 

in rare diseases

• Bayesian approaches in rare disease

– Clinical trial designs

– Bayesian approaches

• Case study

• Conclusions and future directions

OUTLINE
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REGULATORY BACKGROUND OF RARE DISEASES

Common Diseases

Rare Diseases

Prevalence

Country Threshold

US < 200,000

EU < 1/2,000

Japan < 50,000 ↔ < 4/10,000

Singapore < 20,000

1983 US Orphan 

Drug Act

1999 EU Orphan 

Regulation
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RARE DISEASES FACTS

• How many rare diseases?

– Orphanet: 6,000-7,000

– WHO: 5,000-8,000

• How many people have rare diseases?

– US: 25-30 million

– Worldwide: 300-400 million

• What kind of diseases?

– 80% genetic and chronic

• How old are those patients?

– 70% pediatric
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• Usage of expedited 

review pathway has 

been the majority of 

novel drug 

approvals

• Priority review 

consistently 

comprises the 

largest percentage

US FDA CDER NEW DRUG APPROVALS (2019)

Source: CDER New Drug Therapy Approvals 2019 (https://www.fda.gov/media/134493/download) 

https://www.fda.gov/media/134493/download
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• 30-40% are 

identified as first-

in-class in the past 

few years

• 44% of approval for 

orphan disease is 

lower than 58% in 

2018, but higher 

than 33% and 41% 

in 2017 and 2016, 

respectively

US FDA CDER NEW DRUG APPROVALS (2019) – CONT.

Source: Reports & Budgets | CDER – Reports and budgets from CDER offices and divisions 

(https://www.fda.gov/about-fda/center-drug-evaluation-and-research-cder/reports-budgets-cder) 

https://www.fda.gov/about-fda/center-drug-evaluation-and-research-cder/reports-budgets-cder
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• Natural History: Course of development of a disease or condition 

without treatment

• FDA Guidance: Design and conduct natural history studies at the 

earliest stages of drug development

• Objectives of Natural History Studies:

– Define the disease population

– Understand and implement critical elements in clinical trial design

– Select clinical endpoints and develop sensitive and specific outcome 

measures

– Identify new or validate existing biomarkers

• Example: Myozyme/Lumizyme (alglucosidase alfa) – Pompe disease

NATURAL HISTORY STUDIES

Source: Guidance for Industry – Rare Diseases: Common Issues in Drug Development 

(https://www.fda.gov/media/119757/download) CDER/CBER Draft Revision 1 Jan 2019

https://www.fda.gov/media/119757/download
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• Post-Market Surveillance: 

– Further confirm efficacy and its durability (including studies in minority 

populations)

– Detect safety signals

– Observe real-life patient usage of the products

• Rare Disease Program:

– Expedited approval pathway are often adopted

– Surrogate endpoints are used for initial approval

• Real-World Data vs. Natural History

LONG-TERM SAFETY EVALUATION AND USAGE OF REAL-
WORLD DATA IN RARE DISEASES
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• Clinical Development 

Program:

– Pre-clinical studies

– Clinical studies

– Post-market studies

• Trial Aspects:

– Dose selection

– Go/No-go decisions

– Subgroup identification

– Adaptation strategies

• Platform Trial

– Multiple investigational 

treatments

– A shared control group

• Other Design Options

– Cross-over

– Single-arm

BAYESIAN CLINICAL TRIAL DESIGNS
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• Two-Step:

• Power Prior:

• Joint Power Prior:

• Modified Power Prior:

BAYESIAN APPROACHES LEVERAGING HISTORICAL DATA
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Mh = p(θ|D0): Historical data prior

Mr = pr(θ): Robust prior (usually weakly informative)

ROBUST MIXTURE PRIOR
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• Progressive Supranuclear Palsy (PSP): a rare 

neurodegenerative disorder characterized by the accumulation of 

aggregates of tau protein in the brain

• Prevalence (Orphanet): 1/16,600

• Historical Placebo Data: Two double-blind, randomized, 

placebo-control trials (neither met 52-week primary outcome)

– Phase II/III: Davunetide (30 mg) vs. Placebo

– Phase II: Tideglusib (600 and 800 mg) vs. Placebo

• Primary Endpoint: PSP-Rating Scale (PSPRS) @ Week 52

CASE STUDY

* 328.2 mil = 19,771 < 200,000
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ROBUST MIXTURE PRIOR CONSTRUCTION

Mean Standard 

Deviation

Sample 

Size
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• N=40 Placebo Patients

• Prior-Data Conflict

Centered at a mean PSPRS 

change from baseline at 52 

weeks of 0

• No Prior-Data Conflict

Centered at the historical mean 

of 11.24

DESIGNING A NEW TRIAL
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• Using the robust 

mixture is nearly 

equivalent to using the 

historical prior alone, 

thus getting the 

maximal benefit from 

the historical 

information

• Using a vague prior, the 

posterior has much 

greater uncertainty due 

to the small sample size

POSTERIOR RESULTS (NO PRIOR-DATA CONFLICT)
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• Using the robust 

mixture is equivalent to 

using the robust prior 

alone

• Using the historical 

prior, the posterior is 

actually closer to the 

historical data due to 

the small sample size 

compared to the 

historical data

POSTERIOR RESULTS (PRIOR-DATA CONFLICT)
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• Many current rare disease clinical programs either rely on 

traditional trial designs with few variations, or are purely 

based on clinical judgment

• The Scottish Medicines Consortium (SMC) has introduced 

an ultra-orphan definition associated with a new approach 

to decision-making on such medicines in 2018

• US FDA 

– Requested additional budget for potential ultra-orphan incentives

– Complex Innovative Trial Design Pilot Program

• Consider robust Bayesian approaches

CONCLUSIONS AND FUTURE DIRECTIONS
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