

Novel Statistical Methods for Incorporating Real-World Data:

Mitigating Study Power Loss Caused by Clinical Trial Disruptions Due to the COVID-19 Pandemic

Lilly Yue, Wei-Chen Chen, Heng Li, Nelson Lu, Changhong Song, Chenguang Wang*, Ram Tiwari, Yunling Xu

Division of Biostatistics, FDA/CDRH *: JHU

ASA Biopharmaceutical Section Regulatory-Industry Statistics Workshop Sep. 22-25, 2020

Outline

• Novel statistical approaches in leveraging RWD in medical product evaluation

- Today's focus: Propensity score-integrated approaches

- Application: mitigating study power loss caused by clinical trial disruptions due to the COVID-19 pandemic, by leveraging RWD.
- Concluding remarks

Novel Statistical Methods in Leveraging RWD

- Propensity score methodology
 - Identify and construct a control group
 - Form both treatment and control arms
 - Augment treatment or control arm
- Bayesian inference

- Borrow external info. for treatment or control arm
- Composite likelihood approach
 - Down-weight patient info obtained from RWD
- Propensity score-integrated approaches Today's focus
 - Propensity score-integrated power prior Bayesian
 - Propensity score-integrated composite likelihood Frequentist
 - Be used to augment an investigational study leveraging RWD, with the option of down-weighting info. from RWD.

FDA

Propensity Score Methodology

- A ground-breaking statistical innovation for the *design* and *analysis* of observational studies, developed by Rosenbaum and Rubin in 1983 (Rosenbaum and Rubin, 1983).
- Propensity score (PS): Conditional probability of receiving treatment A rather than treatment B, given a collection of observed baseline covariates.
- Replace the <u>collection</u> of confounding covariates with <u>one scalar function</u> of these covariates: the propensity score.
- Goal: Simultaneously balance many observed covariates between the two treatment groups, and then reduce bias in treatment comparison on outcomes.

FDA

Propensity Score Methods

- Propensity score is estimated through statistical modeling of relationship between **treatment group membership** and **covariates.**
- Commonly used PS methods in the regulatory settings:
 - Matching on propensity scores

- Stratification on propensity scores
- Inverse probability of treatment weighting using propensity scores
- All these methods can be used for both study design and outcome analysis, and can separate study *design* from outcome *analysis*.

Bayesian Power Prior

• A power prior is constructed as

$$\pi(\theta/D_0, \alpha) \propto [L(\theta/D_0)]^{\alpha} \pi_0(\theta)$$

- θ : parameter of interest
- $L(\theta/D_0)$: likelihood of the external data
- $-\pi_0(\theta)$: initial prior distribution for θ
- α : power prior parameter, $0 \le \alpha \le 1$
- α : control how much external data to borrow
 - $\alpha = 0$: no borrow
 - $\alpha = 1$: full borrow
- Question: how and when to determine α for a prospective investigational study?

Ref. Chen, M-H and Ibrahim, J.G., (2000) Power Prior Distribution for Regression Models. Statistical Science, 15(1): 46-60

Composite Likelihood Approach

• General form (weighted product of probability density functions):

$$L(\theta|Y) = \prod_{i} f(y_i |\theta)^{\lambda_i}$$

where λ_i is nonnegative weight to be chosen, and can be used to discount patient info from external data source.

- We set:
 - $\lambda_i = 1$, if the patient *i* is from the investigational study
 - $0 < \lambda_i \leq 1$, if the patient *i* is from the external data source
 - E.g. If $\lambda_i = 0.6$, 60% of this patient's info is borrowed and 40% discounted.
- Question: how and when to determine λ for a prospective investigational study?
- Ref. Lindsay, BG (1988). Composite likelihood method. *Contemporary mathematics*, 80(1): 221-239. Varin et al (2011). An overview of composite likelihood methods. *Statistics Sinica*, P5-42.

FDA

Propensity Score-Integrated Approaches

- A new methodology for leveraging RWD to augment a prospective investigational study, and save sample size required in investigational study.
 - PS-integrated power prior (PS + PP) Bayesian
 - PS-integrated composite likelihood (PS + CL) Frequentist
- Used to
 - augment a single-arm investigational study with external data,
 - augment the control arm in an RCT,
 - with the option of down-weighting information from external data.
- PS -> Study design
- PP or CL -> Outcome analysis

PS-Integrated Approaches – Study Design

- Define PS as the conditional probability of being in the investigational study, given patient baseline covariates.
- Use PS to leverage external data source and design an investigational study:
 - Select comparable patients from external data source
 - Determine the weights used to down-weight information of external patients
- The selection of external patients and determination of weights are based on patient baseline covariates: Outcome free!

Application - Mitigating Study Power Loss

- The COVID-19 has major impacts on ongoing clinical trials, and imposed significant challenges caused by clinical trial disruptions.
- Some studies suspended enrolment.
- If restarting the enrolment is impractical, it may still be possible to rescue the disrupted study by mitigating the study power loss How?
- Some suggestions (Meyer et al., 2020):
 - 1). using patients in the current study only and including
 - additional follow-up time (e.g., for time-to-event endpoints), or
 - additional repeated measurements (e.g., for longitudinal endpoints).
 - 2). leveraging external patients such as those extracted from
 - a historical clinical study, or
 - a RWD source.

Ref. Statistical Issues and Recommendations for Clinical Trials Conducted During the COVID-19 Pandemic (Meyer et al, 2020, *SBR*)

Mitigating Power Loss by Leveraging External Data

- It is critical to assess whether leveraging external data fits for purpose for the specific objectives of the current study.
- Sufficient external data quality and integrity are essential for regulatory decision-making *relevance and reliability*.
- Outcome-free planning is critical *trail integrity and transparency*.
- Early consultation with relevant FDA review division is important (FDA guidance documents).
- Statistically, it is borrowing patients from an external data source to augment the current study data.
- The propensity score-integrated approaches can be used
 - Augment single-arm study
 - Augment control-arm of RCT

A Hypothetical Example

- A single-arm clinical study
- Primary endpoint: one-year adverse event
- Parameter of interest: θ, proportion of patients who experienced adverse event(s) within the one-year period.
- Associated hypothesis testing:

 $H_0: \theta \ge 36\%$ vs: $H_a: \theta < 36\%$

- Sample size determination
 - Assume $\theta = 0.30$
 - Set: power = 80%; significance level = 0.05
 - Then, N = 380

A Hypothetical Example (cont.)

- The enrolment was stopped at 290 due to the pandemic, and that it is not practical to reopen the enrolment at a later time.
- It was proposed to
 - borrow 90 = 380 290 patients from a registry for this device in Europe (the device was approved in EU), using the PS-integrated approaches.
 - identify an independent statistician who was blinded to the outcomes data.
- Based on the patient inclusion/exclusion criteria specified in the current study, 941 patients were selected from the registry.
- With the covariate data of 1,231 (290 + 941) patients from the current study and registry, a propensity score model was created by the independent statistician, using logistic regression.
- Five PS strata were formed, and balance for each covariate was checked using numerical and graphical methods.

Table 1. Sample Size in PS Stratum

	1	2	3	4	5	Total
Current Study (n)	58	58	58	58	58	290
Registry (n)	281	210	154	187	109	941

- Note:
 - 90 external patients were planned to borrow, but 941 identified.
 - Only partial info from each of 941 external patients could be borrowed.
 - Partial? How much? Depending on what?
- Step 1 Split 90 nominal patients into 5 PS strata
- Step 2 Determine how much to borrow within each PS stratum

Step 1. Split 90 nominal patients

- Split 90 nominal patients into 5 PS strata, *proportional* to the similarity of external and the current patients in terms of baseline covariates.
- The similarity is measured by an *overlapping coefficient*, the overlapping area of propensity score distributions of the two groups of patients.

Overlapping Coefficients

PS Stratum						
	1	2	3	4	5	Total
Current Study (n)	58	58	58	58	58	290
Current Study (n) Registry (n) Overlap Coeff	281	210	154	187	109	941
Overlap Coeff	0.87	0.78	0.86	0.84	0.77	

Standardized Overlapping Coefficients

PS Stratum							
	1	2	3	4	5	Total	
Current Study (n)	58	58	58	58	58	290	
Registry (n)	281	210	154	187	109	941	
Overlap Coeff	0.87	0.78	0.86	0.84	0.77		
Current Study (n) Registry (n) Overlap Coeff Std. Overlap Coef.	21%	19%	21%	20%	19%	100%	

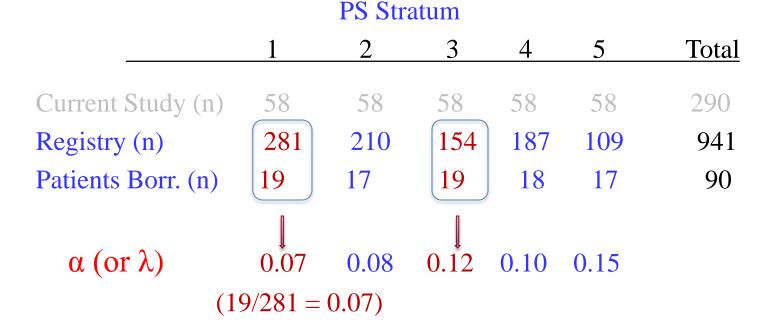
Splitting 90 Nominal External Patients

PS Stratum							
	1	2	3	4	5	Total	
Current Study (n)	58	58	58	58	58	290	
Registry (n)	281	210	154	187	109	941	
Overlap Coeff	0.87	0.78	0.86	0.84	0.77		
Std. Overlap Coef.	21%	19%	21%	20%	19%	100%	
Patients Borrowed	19 🥆	17	19	18	17	90	
$(90 \ge 21\% = 19)$ $(90 \ge 19\% = 17)$						= 17)	

• The number of external patients allocated to each PS stratum is proportional to their *standardized overlapping coefficient*.

Step 2. Determining How Much Info to Borrow

- The info borrowed from each individual external patient depends on how many external patients in that PS stratum.
- The power prior parameter for each individual external patient, α, is inversely proportional to the sample size of external patients in the PS stratum.



Leveraging RWD Planning – Finished

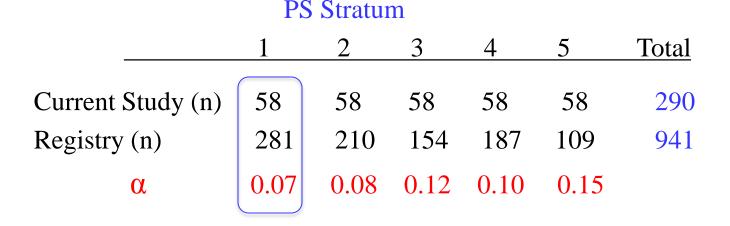
• We know

- The PS stratum each patient would belong to.
- How much info each external patient could contribute.
- Study operating characteristics: 80% power; 5% Type I error rate.

PS Stratum							
	1	2	3	4	5	Total	
Current Study (n)					58	290	
Registry (n)	281	210	154	187	109	941	
α (or λ)	0.07	0.08	0.12	0.10	0.15		

Outcome Analysis (Power Prior)

• After the clinical outcome was observed from all the patients, the final analysis was conducted, based on the PS study design:



- Apply the power prior approach within each stratum to get stratumspecific posterior distribution, which are then combined to complete the inference for the parameter of interest.
- The posterior probability of $\theta < 36\%$ is 96.9%, which meets the study success criterion.

Outcome Analysis (Composite Likelihood)

• After the clinical outcome was observed from all the patients, the final analysis was conducted.

PS Stratum						
	1	2	3	4	5	Total
Current Study (n)	58	58 210	58	58	58	290
Registry (n) λ	281 0.07					941
Current Study (n) Registry (n) λ	58 281 0.07		58 154 0.12			290 941

- Apply the composite likelihood approach to get stratum-specific parameter estimate, which are then combined to complete the inference for the parameter of interest.
- Maximum likelihood estimate of $\theta = 31\%$, *p*-value = 0.01.

Concluding Remarks

- Novel statistical methods play a critical role in leveraging RWD to support regulatory decisions.
- Propensity score-integrated approaches can be applied to incorporate RWD for a prospective investigational clinical study.
- Propensity score-integrated approaches can be utilized to mitigate study power loss due to the COVID-19 pandemic.

US FDA Guidance

- US Food and Drug Administration (2020), "FDA Guidance on Conduct of Clinical Trials of Medical Products during COVID-19 Public Health Emergency," available at <u>https://www.fda.gov/regulatory-</u> information/search-fda-guidance-documents/fda-guidance-conductclinical-trials-medical-products-during-covid-19-public-health-<u>emergency</u>.
- US Food and Drug Administration (2020), "Statistical Considerations for Clinical Trials During the COVID-19 Public Health Emergency Guidance for Industry," available at https://www.fda.gov/regulatory-information/search-fda-guidance-documents/statistical-considerations-clinical-trials-during-covid-19-public-health-emergency-guidance-industry.

PS-Integrated Approaches - Reference

- Wang, C., Li, H., Chen, W., Lu, N., Tiwari, R., Xu, Y., Yue, L. (2019). Propensity Score-Integrated Power Prior Approach for Incorporating Real-World Evidence in Single-Arm Clinical Studies. *Journal of Biopharmaceutical Statistics*, 29 (5),731-748.
- Wang, C., Lu, N. Chen, W., Li, H. Tiwari, R., Xu, Y., Yue, L. Propensity Score-Integrated Composite Likelihood Approach for Incorporating Real-World Evidence in Single-Arm Clinical Studies. *Journal of Biopharmaceutical Statistics*, 30(3), 2020.
- Chen, W., Wang, C., Li, H., Lu, N. Tiwari, R., Xu, Y., Yue, L. Propensity Score-Integrated Composite Likelihood Approach for Augmenting the Control Arm of a Randomized Controlled Trial by Incorporating Real-World Data. *Journal of Biopharmaceutical Statistics*, 30(3), 2020.

Thank You!