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Outline

• Novel statistical approaches in leveraging RWD in 
medical product evaluation
– Today’s focus: Propensity score-integrated approaches

• Application: mitigating study power loss caused by 
clinical trial disruptions due to the COVID-19 pandemic, 
by leveraging RWD.

• Concluding remarks
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Novel Statistical Methods in Leveraging RWD
• Propensity score methodology

– Identify and construct a control group
– Form both treatment and control arms
– Augment treatment or control arm

• Bayesian inference 
– Borrow external info. for treatment or control arm

• Composite likelihood approach
– Down-weight patient info obtained from RWD

• Propensity score-integrated approaches – Today’s focus 
– Propensity score-integrated power prior – Bayesian 
– Propensity score-integrated composite likelihood – Frequentist 
– Be used to augment an investigational study leveraging RWD, with 

the option of down-weighting info. from RWD.

3
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Propensity Score Methodology

• A ground-breaking statistical innovation for the design and analysis of 
observational studies, developed by Rosenbaum and Rubin in 1983 
(Rosenbaum and Rubin, 1983).

• Propensity score (PS): Conditional probability of receiving treatment A 
rather than treatment B, given a collection of observed baseline 
covariates.

• Replace the collection of confounding covariates with one scalar function
of these covariates: the propensity score.

• Goal: Simultaneously balance many observed covariates between the two 
treatment groups, and then reduce bias in treatment comparison on 
outcomes.

4
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Propensity Score Methods

• Propensity score is estimated through statistical modeling of relationship 
between treatment group membership and covariates.

• Commonly used PS methods in the regulatory settings:
– Matching on propensity scores
– Stratification on propensity scores
– Inverse probability of treatment weighting using propensity scores

• All these methods can be used for both study design and outcome 
analysis,  and can separate study design from outcome analysis.
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Bayesian Power Prior
• A power prior is constructed as

π(θ|D0, α) ∝ [L(θ|D0)]
α π0(θ)

– θ : parameter of interest
– L(θ|D0):  likelihood of the external data
– π0(θ): initial prior distribution for θ

– α: power prior parameter, 0 ≤ α ≤ 1

• α: control how much external data to borrow
• α = 0: no borrow
• α = 1: full borrow

• Question: how and when to determine α for a prospective investigational 
study?

Ref. Chen, M-H and Ibrahim, J.G., (2000) Power Prior Distribution for Regression Models. 
Statistical Science, 15(1): 46-60
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• General form (weighted product of probability density functions):

𝐿𝐿(𝜃𝜃|𝑌𝑌) = ∏i 𝑓𝑓(𝑦𝑦𝑖𝑖 |𝜃𝜃)λi

where λi is nonnegative weight to be chosen, and can be used to discount  
patient info from external data source.

• We set: 
– λi = 1, if the patient i is from the investigational study
– 0 < λi ≤ 1, if the patient i is from the external data source
 E.g. If λi = 0.6, 60% of this patient’s info is borrowed and 40% discounted.

• Question: how and when to determine λ for a prospective investigational 
study?

Ref. Lindsay, BG (1988). Composite likelihood method. Contemporary mathematics, 80(1): 221-239.
Varin et al (2011). An overview of composite likelihood methods. Statistics Sinica, P5-42.

Composite Likelihood Approach
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Propensity Score-Integrated Approaches

• A new methodology for leveraging RWD to augment a prospective 
investigational study, and save sample size required in investigational 
study.

– PS-integrated power prior (PS + PP)  - Bayesian 
– PS-integrated composite likelihood (PS + CL) – Frequentist 

• Used to 
– augment a single-arm investigational study with external data, 
– augment the control arm in an RCT,
– with the option of down-weighting information from external data. 

• PS -> Study design

• PP or CL ->  Outcome analysis
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PS-Integrated Approaches – Study Design

• Define PS as the conditional probability of being in the investigational 
study, given patient baseline covariates.

• Use PS to leverage external data source and design an investigational 
study:
 Select comparable patients from external data source
 Determine the weights used to down-weight information of 

external patients

• The selection of external patients and determination of weights are based 
on patient baseline covariates: Outcome free! 

9
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Application - Mitigating Study Power Loss

• The COVID-19 has major impacts on ongoing clinical trials, and imposed 
significant challenges caused by clinical trial disruptions.

• Some studies suspended enrolment. 

• If restarting the enrolment is impractical, it may still be possible to rescue 
the disrupted study by mitigating the study power loss - How? 

• Some suggestions (Meyer et al., 2020): 
1). using patients in the current study only and including  

• additional follow-up time (e.g., for time-to-event endpoints), or
• additional repeated measurements (e.g., for longitudinal endpoints).

2). leveraging external patients such as those extracted from 
• a historical clinical study, or 
• a RWD source.

Ref. Statistical Issues and Recommendations for Clinical Trials Conducted During the COVID-19 
Pandemic (Meyer et al, 2020, SBR)
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Mitigating Power Loss by Leveraging External Data

• It is critical to assess whether leveraging external data fits for purpose for 
the specific objectives of the current study.

• Sufficient external data quality and integrity are essential for regulatory 
decision-making – relevance and reliability. 

• Outcome-free planning is critical – trail integrity and transparency.

• Early consultation with relevant FDA review division is important (FDA 
guidance documents).

• Statistically, it is borrowing patients from an external data source to 
augment the current study data. 

• The propensity score-integrated approaches can be used 
– Augment single-arm study
– Augment control-arm of RCT
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A Hypothetical Example

• A single-arm clinical study

• Primary endpoint: one-year adverse event

• Parameter of interest: θ, proportion of patients who experienced adverse 
event(s) within the one-year period.

• Associated hypothesis testing:

H0 : θ ≥ 36%    vs:   Ha : θ < 36%

• Sample size determination
• Assume θ = 0.30
• Set: power = 80%; significance level = 0.05

• Then, N = 380
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A Hypothetical Example (cont.)
• The enrolment was stopped at 290 due to the pandemic, and that it is not 

practical to reopen the enrolment at a later time. 

• It was proposed to 
– borrow 90 = 380 - 290 patients from a registry for this device in Europe (the 

device was approved in EU), using the PS-integrated approaches.
– identify an independent statistician who was blinded to the outcomes data.

• Based on the patient inclusion/exclusion criteria specified in the current 
study, 941 patients were selected from the registry.

• With the covariate data of 1,231 (290 + 941) patients from the current 
study and registry, a propensity score model was created by the 
independent statistician, using logistic regression.

• Five PS strata were formed, and balance for each covariate was checked 
using numerical and graphical methods. 
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Table 1. Sample Size in PS Stratum 

1      2       3      4      5     Total 

Current Study (n)      58     58    58    58    58     290
Registry (n) 281   210  154  187  109    941

• Note: 
– 90 external patients were planned to borrow, but 941 identified. 
– Only partial info from each of 941 external patients could be borrowed. 
– Partial?  How much? Depending on what? 

Step 1 – Split 90 nominal patients into 5 PS strata
Step 2 – Determine how much to borrow within each PS stratum 
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Step 1. Split 90 nominal patients 

• Split 90 nominal patients into 5 PS strata, proportional to the 
similarity of external and the current patients in terms of 
baseline covariates.

• The similarity is measured by an overlapping coefficient, the 
overlapping area of propensity score distributions of the two 
groups of patients.
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PS Stratum 
1          2         3         4         5          Total  

Current Study (n)     58        58       58       58        58          290
Registry (n)              281      210     154     187     109         941
Overlap Coeff          0.87     0.78    0.86    0.84     0.77

Overlapping Coefficients 
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Standardized  Overlapping Coefficients 

PS Stratum 
1          2         3         4         5          Total  

Current Study (n)     58        58       58       58        58          290
Registry (n)              281      210     154     187     109         941
Overlap Coeff          0.87     0.78    0.86    0.84     0.77
Std. Overlap Coef.   21%    19%    21%     20%    19%       100%
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PS Stratum 
1          2         3         4         5          Total  

Current Study (n)     58        58       58       58        58          290
Registry (n)              281      210     154     187     109         941
Overlap Coeff 0.87     0.78    0.86    0.84     0.77
Std. Overlap Coef.   21%    19%    21%     20%    19%       100%
Patients Borrowed    19        17        19      18        17           90

(90 x 21% =19)                             (90 x 19% = 17)

• The number of external patients allocated to each PS stratum is 
proportional to their standardized overlapping coefficient.

Splitting 90 Nominal External Patients
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Step 2. Determining How Much Info to Borrow

• The info borrowed from each individual external patient depends on 
how many external patients in that PS stratum.

• The power prior parameter for each individual external patient, α, is 
inversely proportional to the sample size of external patients in the PS 
stratum.   

PS Stratum 
1            2           3         4         5            Total  

Current Study (n)      58          58        58       58        58           290
Registry (n)               281 210       154 187     109           941
Patients Borr. (n)      19 17          19 18       17             90

α (or λ) 0.07 0.08     0.12 0.10    0.15 
(19/281 = 0.07)



20

Leveraging RWD Planning – Finished

• We know  
– The PS stratum each patient would belong to.
– How much info each external patient could contribute.
– Study operating characteristics: 80% power; 5% Type I error rate. 

PS Stratum 
1          2         3         4         5          Total  

Current Study (n)     58        58       58       58        58          290
Registry (n)              281      210     154     187     109         941

α (or λ) 0.07     0.08    0.12    0.10     0.15 
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• After the clinical outcome was observed from all the patients, the final 
analysis was conducted, based on the PS study design: 

PS Stratum 
1          2         3         4         5          Total  

Current Study (n)     58        58       58       58        58          290
Registry (n)              281      210     154     187     109         941

α             0.07     0.08    0.12    0.10     0.15 

• Apply the power prior approach within each stratum to get stratum-
specific posterior distribution, which are then combined to complete the 
inference for the parameter of interest. 

• The posterior probability of θ < 36% is 96.9%, which meets the study 
success criterion.

Outcome Analysis (Power Prior)
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Outcome Analysis (Composite Likelihood)

• After the clinical outcome was observed from all the 
patients, the final analysis was conducted. 

PS Stratum 
1          2         3         4         5          Total  

Current Study (n)     58        58       58       58        58          290
Registry (n)              281      210     154     187     109         941

λ 0.07     0.08    0.12    0.10     0.15 

• Apply the composite likelihood approach to get stratum-specific 
parameter estimate, which are then combined to complete the inference 
for the parameter of interest.

• Maximum likelihood estimate of θ = 31%, p-value = 0.01.
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Concluding Remarks

• Novel statistical methods play a critical role in leveraging 
RWD to support regulatory decisions. 

• Propensity score-integrated approaches can be applied to 
incorporate RWD for a prospective investigational clinical  
study.

• Propensity score-integrated approaches can be utilized to 
mitigate study power loss due to the COVID-19 pandemic.

2
3
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US FDA Guidance 

• US Food and Drug Administration (2020), “FDA Guidance on Conduct of 
Clinical Trials of Medical Products during COVID-19 Public Health 
Emergency,” available at https://www.fda.gov/regulatory-
information/search-fda-guidance-documents/fda-guidance-conduct-
clinical-trials-medical-products-during-covid-19-public-health-
emergency.

• US Food and Drug Administration (2020), “Statistical Considerations for 
Clinical Trials During the COVID-19 Public Health Emergency Guidance 
for Industry,” available at https://www.fda.gov/regulatory-
information/search-fda-guidance-documents/statistical-considerations-
clinical-trials-during-covid-19-public-health-emergency-guidance-
industry.

https://www.fda.gov/regulatory-information/search-fda-guidance-documents/fda-guidance-conduct-clinical-trials-medical-products-during-covid-19-public-health-emergency
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/statistical-considerations-clinical-trials-during-covid-19-public-health-emergency-guidance-industry
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PS-Integrated Approaches - Reference

• Wang, C., Li, H., Chen, W., Lu, N., Tiwari, R., Xu, Y., Yue, L. (2019). Propensity 
Score-Integrated Power Prior Approach for Incorporating Real-World Evidence in 
Single-Arm Clinical Studies. Journal of Biopharmaceutical Statistics, 29 (5),731-
748.

• Wang, C., Lu, N. Chen, W., Li, H. Tiwari, R., Xu, Y., Yue, L. Propensity Score-
Integrated Composite Likelihood Approach for Incorporating Real-World 
Evidence in Single-Arm Clinical Studies. Journal of Biopharmaceutical Statistics, 
30(3), 2020.

• Chen, W., Wang, C., Li, H., Lu, N. Tiwari, R., Xu, Y., Yue, L. Propensity Score-
Integrated Composite Likelihood Approach for Augmenting the Control Arm of a 
Randomized Controlled Trial by Incorporating Real-World Data. Journal of 
Biopharmaceutical Statistics, 30(3), 2020.
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Thank You!
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