301154

A NEW METHOD TO ESTIMATE TREATMENT EFFECT AND CLASSIFIER FOR LATENT SUBGROUP

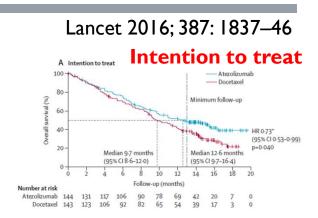
2020 ASA BIOPHARMACEUTICAL SECTION REGULATORY-INDUSTRY STATISTICS WORKSHOP FRIDAY, SEPTEMBER 25 AT 11:45 A.M. – 12:45 P.M. EDT.

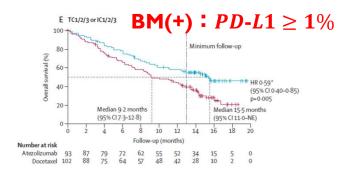
Kohei Uemura¹, Aya Kuchiba¹, Shogo Nomura¹

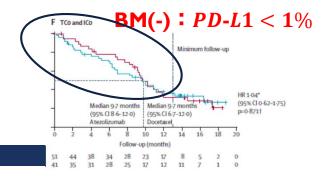
I: Department of Biostatistics and Bioinformatics, University of Tokyo 2: Biostatistics Division, CRAS, National Cancer Center

Introduction

- Recently, immune checkpoint inhibitors of PDI/PD-LI have been actively developed as cancer treatment.
- How to define target population: BM-positive ?
 - Those whose expression level of the biomarker (BM) are over than a cutoff value
- A problem is that
 - A currently used subgroup classifier based on PDI/PD-LI expression level may be imperfect to select target patients
 - E.g. Atezolizumab may be effective in some patients regardless of PD-L1 negative according to a RCT: Atezolizumab vs. docetaxel for NSCLC (POPLAR)
- So there would exist a better classifier for treatment selection of PDI/PDLI inhibitors
- Examinations of how far PDI/PD-LI classifier departs from an ideal one require information on latent subgroup membership



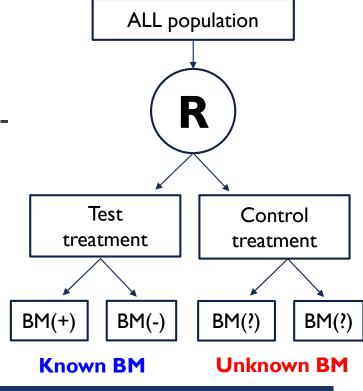




An existing method to estimate latent subgroup

- Altstein and Li, Biometrics. 2013; 69:52-61
 - Data from a randomized clinical trial
 - Utilize framework of principal stratification in noncompliance setting with partially known principal strata under monotonicity assumption
 - Estimate latent subgroups where latent subgroup membership is known for those who are assigned to one of the two arms in clinical trial.

3

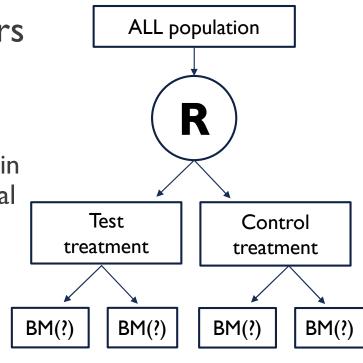


A challenge to estimation of latent subgroup

In situation of immune checkpoint inhibitors

- Intent subgroup membership is now unknown for both treatment arms
 - Can not utilize framework of principal stratification in non-compliance setting with partially known principal strata under monotonicity assumption
- There are imperfect information (PD-LI classifier) on latent subgroup membership

4



Unknown latent subgroup member -ships in both arms

Objective

Propose a new statistical method

5

- To estimate latent subgroup indicators under the situation where latent subgroup memberships are unknown for both treatment arms
- Our methods utilize observed PDI/PD-LI classifier as prior information and update individual status based on Bayes theorem according to survival outcome data

Simulation study

- > Show preliminary results of estimation by proposed method with large samples
- Also calculate C-index to assess how estimated subgroup indicators predict latent subgroup memberships

Notation

- **T**_i : Survival time of patient i
- C_i : Right censoring time of patient i
- $X_i = \min(T_i, C_i)$: Observed time of patient *i*
- $\delta_i = I(T_i \leq C_i)$: Indicator variable of event of patient *i*
- **R**_i = 1 : Experimental treatment, $R_i = 0$: Control treatment
- G_i : Latent subgroup membership of patient i
 - > $G_i = 1$: Target population of PDI/PD-LI inhibitors, $G_i = 0$: Non-target population
- **Z**_{*i*} = $(Z_{i1}, ..., Z_{iq})'$: Observed covariate of patient *i*

6

AFT(Accelerate Failure Time) mixture model

We use AFT mixture model

 \succ To express different treatment effects across unknwon true classifier G_i

$$Pr(G_i = 1) = p$$

$$\log(T_i | R_i, G_i, \mathbf{Z}_i) = \alpha_1 R_i + \alpha_2 G_i + \alpha_3 R_i G_i + \mathbf{Z}'_i \boldsymbol{\beta} + \sigma \varepsilon_i$$

- $\succ p$: parameter of proportion of a latent subgroup of $G_i = 1$
- > α_1 : parameter of treatment effect for non-target population of $G_i = 0$
- > α_2 : parameter of prognostic effect of target population of $G_i = I$
- > α_3 : parameter of predictive treatment effect for target population of $G_i = I$
- > β : parameter vector of intercept and effects of covariates
- > σ : scale parameter, ε_i : random error following extreme value distribution G(0, 1)

Estimation by EM algorithm

8

- Construction of likelihood based on the AFT mixture model
 - > Each patient contributes to likelihood as both members of target and non-target population using estimated classifier $\hat{G}_i^{(m)}$

$$L\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \boldsymbol{\beta} \middle| R_{i}, \hat{G}_{i}^{(m)}, \boldsymbol{Z}_{i}\right)$$

$$= \prod_{i=1}^{n} \left[pf(X_{i} | R_{i}, G_{i} = 1, \boldsymbol{Z}_{i})^{\delta_{i}} S(X_{i} | R_{i}, G_{i} = 1, \boldsymbol{Z}_{i})^{1-\delta_{i}} \right]^{\hat{G}_{i}^{(m)}} \cdot \left[(1-p)f(X_{i} | R_{i}, G_{i} = 0, \boldsymbol{Z}_{i})^{\delta_{i}} S(X_{i} | R_{i}, G_{i} = 0, \boldsymbol{Z}_{i})^{1-\delta_{i}} \right]^{1-\hat{G}_{i}^{(m)}}$$

How to estimate $\hat{G}_i^{(m)}$?

Bayes theorem

> If T_i (survival time of patient i) is observed: $\delta_i = 1$

$$\hat{G}_{i}^{(m)} = \frac{Pr(T_{i} = x_{i} | R_{i}, G_{i} = 1, \mathbf{Z}_{i}, \boldsymbol{\Theta}^{(m)}) Pr(G_{i} = 1 | \boldsymbol{\Theta}^{(m)})}{\sum_{g \in \{0, 1\}} Pr(T_{i} = x_{i} | R_{i}, G_{i} = g, \mathbf{Z}_{i}, \boldsymbol{\Theta}^{(m)}) Pr(G_{i} = g | \boldsymbol{\Theta}^{(m)})}$$
$$= \frac{p^{(m)}f(x_{i} | R_{i}, G_{i} = 1, \mathbf{Z}_{i}, \boldsymbol{\Theta}^{(m)})}{p^{(m)}f(x_{i} | R_{i}, G_{i} = 1, \mathbf{Z}_{i}, \boldsymbol{\Theta}^{(m)}) + (1 - p^{(m)})f(x_{i} | R_{i}, G_{i} = 0, \mathbf{Z}_{i}, \boldsymbol{\Theta}^{(m)})}$$

Note that
$$\boldsymbol{\Theta}^{(m)} = \alpha_1^{(m)}, \alpha_2^{(m)}, \alpha_3^{(m)}, \boldsymbol{\beta}^{(m)}$$

How to estimate $\hat{G}_i^{(m)}$?

Bayes theorem

> If T_i (survival time of patient i) is censored: $\delta_i = 0$

$$\begin{aligned} \widehat{G}_{i}^{(m)} &= \frac{Pr(T_{i} > x_{i} | R_{i}, G_{i} = 1, \mathbf{Z}_{i}, \boldsymbol{\Theta}^{(m)}) Pr(G_{i} = 1 | \boldsymbol{\Theta}^{(m)})}{\sum_{g \in \{0, 1\}} Pr(T_{i} > x_{i} | R_{i}, G_{i} = g, \mathbf{Z}_{i}, \boldsymbol{\Theta}^{(m)}) Pr(G_{i} = g | \boldsymbol{\Theta}^{(m)})} \\ &= \frac{p^{(m)} f(x_{i} | R_{i}, G_{i} = 1, \mathbf{Z}_{i}, \boldsymbol{\Theta}^{(m)})}{p^{(m)} S(x_{i} | R_{i}, G_{i} = 1, \mathbf{Z}_{i}, \boldsymbol{\Theta}^{(m)}) + (1 - p^{(m)}) S(x_{i} | R_{i}, G_{i} = 0, \mathbf{Z}_{i}, \boldsymbol{\Theta}^{(m)})} \end{aligned}$$

Note that
$$\boldsymbol{\Theta}^{(m)} = \alpha_1^{(m)}, \alpha_2^{(m)}, \alpha_3^{(m)}, \boldsymbol{\beta}^{(m)}$$

Proposed method

■Using information of observed classifier $PD-L1_i \in \{0, 1\}$ > E-step : In case of $\delta_i = 1$ $\hat{G}_i^{(m)} = \frac{\Pr[G_i=1|PD-L1_i]^{(m)}f(x_i|R_i, G_i=1, \mathbf{Z}_i, \mathbf{\Theta}^{(m)})}{\Pr[G_i=1|PD-L1_i]^{(m)}f(x_i|R_i, G_i=1, \mathbf{Z}_i, \mathbf{\Theta}^{(m)}) + (1-\Pr[G_i=1|PD-L1_i]^{(m)})f(x_i|R_i, G_i=0, \mathbf{Z}_i, \mathbf{\Theta}^{(m)})}$ $\Pr[G_i = 1|PD-L1_i = 1]^{(m)} = \frac{p^{(m)}se^{(m)}}{p^{(m)}se^{(m)} + (1-p^{(m)})(1-sp^{(m)})}$ $\Pr[G_i = 1|PD-L1_i = 0]^{(m)} = \frac{p^{(m)}(1-se^{(m)})}{p^{(m)}(1-se^{(m)}) + (1-p^{(m)})sp^{(m)}}$ Note that $se = \Pr[PD-L1_i = 1]G_i = 1$, $sp = \Pr[PD-L1_i = 0|G_i = 0]$

Proposed method (cont')

12

■Using information of observed classifier $PD-L1_i \in \{0, 1\}$ > M-step: $\alpha_1^{(m+1)}, \alpha_2^{(m+1)}, \alpha_3^{(m+1)}, \beta^{(m+1)} = \underset{\Theta}{\operatorname{argmax}} \left[L\left(p | X_i, \hat{G}_i^{(m)} \right) L\left(\alpha_1, \alpha_2, \alpha_3, \beta | X_i, \hat{G}_i^{(m)} \right) \right]$ $p^{(m+1)} = \underset{p}{\operatorname{argmax}} \left[L\left(p | X_i, \hat{G}_i^{(m)} \right) L\left(\alpha_1, \alpha_2, \alpha_3, \beta | X_i, \hat{G}_i^{(m)} \right) \right] = \frac{1}{n} \sum_{i=1}^n \hat{G}_i^{(m)}$ $se^{(m+1)} = \Pr[PD-L1_i = 1|G_i = 1] = \frac{\frac{1}{n} \sum_{i=1}^n PD-L1_i \hat{G}_i^{(m)}}{p^{(m)}}$ $sp^{(m+1)} = \Pr[PD-L1_i = 0|G_i = 0] = \frac{\frac{1}{n} \sum_{i=1}^n (1 - PD-L1_i)(1 - \hat{G}_i^{(m)})}{1 - p^{(m)}}$ Simulation study

$$Pr(G_i = 1) = p$$

$$\log(T_i | R_i, G_i, \mathbf{Z}_i) = \alpha_1 R_i + \alpha_2 G_i + \alpha_3 R_i G_i + \sigma \varepsilon_i$$

Considering 6 scenarios

13

In hazard ratio scale

>
$$\exp(-\alpha_1)$$
 : 0
> $\exp(-\alpha_2)$: 5.0, 3.0, 1.5
> $\exp(-\alpha_3)$: 0.1, 0.3, 0.5, 0.7
n/group=10,000

Results of estimation without info. of observed classifier $PD-L1_i$ Large bias of estimates for small effect sizes of HR

scenario ^{a)}	effect	Estimated HR	95%	CI	Estimated p ^{b)}	scenario ^{a)}	effect	Estimated HR	95%	SCI	Estimated p ^{b)}
① 0.2, 0.1, 5	treat	0.098	[0.094,	0.102]	0.588	6 0.2, 0.7, 1.5	treat	0.389	[0.364 ,	0.413]	0.216
	SubG	4.953	[4.783 ,	5.123]			SubG	1.771	[1.69 ,	1.852]	
② 0.2, 0.3, 5	treat	0.300	[0.289,	0.311]	0.593	0.4, 0.7, 1.5	treat	0.600	[0.572,	0.627]	0.402
	SubG	4.919	[4.750,	5.089]			SubG	1.552	[1.494 ,	1.609]	
③ 0.2, 0.5, 5	treat	0.496	[0.478,	0.514]	0.586	0.6, 0.7, 1.5	treat	0.710	[0.684,	0.737]	0.599
	SubG	4.900	[4.730,	5.069]			SubG	1.628	[1.571 ,	1.685]	
④ 0.2, 0.7, 5	treat	0.699	[0.674,	0.725]	0.576	0.8, 0.7, 1.5	treat	0.775	[0.75,	0.8]	0.794
	SubG	4.913	[4.744 ,	5.083]			SubG	1.864	[1.787,	1.94]	
⑤ 0.2, <u>0.7, 3</u>	treat	0.673	[0.647,	0.699]	0.520	a) Initial value for p, Treatment HR: $\exp(-lpha_3)$,					
	SubG	3.013	[2.909,	3.117]		Latent subgrou	up progr	nostic HR: e :	$\exp(-\alpha_2)$.		
more restrict	treat	0.703	[0.678,	0.729]	0.597	b) True value of p (proportion of latent subgroup) is set at 0.6.					
convergence criteria	^a SubG	2.963	[2.860,	3.066]							

a) Initial value for p, Treatment HR: $exp(-\alpha_3)$,

Latent subgroup prognostic HR: $exp(-\alpha_2)$.

b) True value of p (proportion of latent subgroup) is set at 0.6.

Results of estimation with info. of observed classifier $PD-L1_i$ No or little bias of estimates for small effect sizes of HR

scenario ^{a)}	effect	Estimated	95%	%CI	Estimated p ^{b)}	
scenario	enect	HR	557			
① 0.2, 0.1, 5	treat	0.100	[0.095,	0.104]	0.593	
	SubG	4.967	[4.795 ,	5.140]		
② 0.2, 0.3, 5	treat	0.300	[0.289,	0.311]	0.589	
	SubG	4.923	[4.751 ,	5.096]		
③ 0.2, 0.5, 5	treat	0.505	[0.487,	0.523]	0.596	
	SubG	4.935	[4.763 ,	5.107]		
④ 0.2, 0.7, 5	treat	0.707	[0.682,	0.733]	0.601	
	SubG	4.952	[4.779,	5.124]		
⑤ 0.2, 0.7, 3	treat	0.707	[0.681,	0.732]	0.597	
	SubG	2.957	[2.854 ,	3.060]		
⑥ 0.2, 0.7, 1.5	treat	0.678	[0.650,	0.705]	0.535	
	SubG	1.496	[1.444 ,	1.549]		

a) Initial value for p, Treatment HR: $\exp(-\alpha_3)$,

Latent subgroup prognostic HR: $exp(-\alpha_2)$.

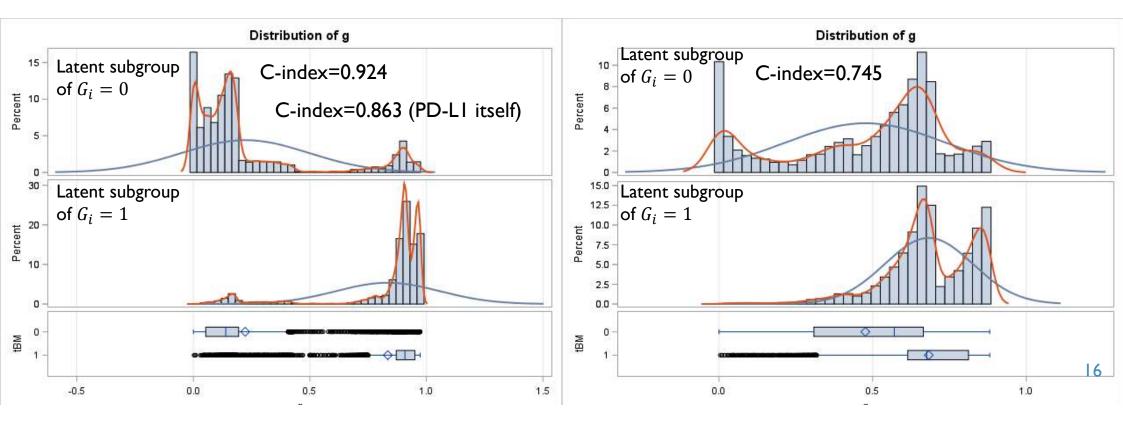
b) True value of p (proportion of latent subgroup) is set at 0.6.

C-index is for prediction of true G_i

Distribution of \hat{G}_i : scenario **(2**)

Estimation using prior information of PD-L1 (proposed)

Estimation not using prior



Summary

- We propose a new statistical method
 - To estimate latent subgroup indicators under the situation where latent subgroup memberships are unknown for both treatment arms
 - > Our methods utilize observed PDI/PD-LI classifier as prior information
- Our method can estimate treatment effects and memberships for latent subgroups
 - > Without major bias even in case of small effect sizes concerning treatment and subgroup
 - > With higher values of C-index for prediction of each patient's latent memberships
- Our method will be useful for examinations of how far PDI/PD-LI classifier departs from an ideal one
 - PDI/PD-LI expression level is relating to activity of effector phase of T-cell, but other immune system activity might mainly or additionally relate to cancer progression including priming phase
 - Uncertainty of cutoff values of BMs

17

Please contact us if any. Email : Kohei.Uemura@iii.u-tokyo.ac.jp