
Jitter Trees: TF-IDF Weighted Similarity Estimates for Unseen Categories

David Bang and Feng-Chang Lin
Department of Biostatistics, Gillings School of Public Health, UNC Chapel Hill

Jitter Trees: TF-IDF Weighted Similarity Estimates for Unseen Categories

David Bang and Feng-Chang Lin
Department of Biostatistics, Gillings School of Public Health, UNC Chapel Hill

Background

The majority of machine learning models are static meaning once a model has been fitted;
they are not able to dynamically adjust their decision paths, hyperparameters, etc. This is
problematic when the test and train data differs in distribution especially when there are
unseen categories. Modern approaches rely on preprocessing techniques such as imputation
by treating unseen categories as missing values or by assigning them predetermined clusters.
TF-IDF Similarity Weighted Estimates (TIWS) is a novel framework by treating categorical
data in an NLP context. TIWS assigns the unseen category a linear combination of seen
categories with weights based on similarity measures.

Method

Suppose we have train and test data D = {(x, y)}ni=1, D∗ = {(x∗, y∗)}n∗i=1, respectively.

Let xi = (xi1, . . . , xip)
T ∈ Rp consists of only categorical features where xij represents

the jth feature of xi, and j = 1, ..., p. Let cjk represent the kth category of the jth

feature, and let k = 1, .., lj with lj denoting the number of known categories in the jth

feature. WLOG, we assume there is only one unseen category in the feature j. We let
cjlj+1

represent the unseen category. We compute a target estimate ŷjk [2] for the target

parameter E(y|xij = cjk) using the training label y. An empirical average of y with the
same category cjk can be used.

ŷjk =

∑n
i=1 I(xij = cjk) · yi + ap∑n
i=1 I(xij = cjk) + a

where a > 0 is a parameter. A common setting for p is the average target value in the
dataset. This assigns categories a numeric value. To construct documents of categories it

is important to combine only the feature data Dx
⋃
D∗x = {(x̃,)}n+n∗

i=1 . A document of a
specific category is defined by

Djj′ =

cj′1 · · · cj′lj′

cj1 f (cj1, cj′1) · · · f (cj1, cj′lj′
)

cj2 f (cj2, cj′1) · · · f (cj2, cj′lj′
)

...
cjlj+1

f (cjlj+1
, cj′1) · · · f (cjlj+1

, cj′lj′
)

where f (cjk, cj′k′) =
∑n
i=1 I(x̃ij = cjk)I(x̃ij′ = cj′k′) for j′ 6= j, j′ = 1, ..., p, k′ =

1, ..., lj′, and k = 1, ..., lj. In short, frequency counts where x̃ij = cjk and x̃ij′ = cj′k′.

We consider Djj′ as a text corpus for the jth category, where its words are represented by

each cjk. For j′ = 1, . . . , p and j′ 6= j, we augment the Djj′ matrix to the full document
matrix Dj that combines matrices by categories of feature j. The document matrix Dj can

be defined by Dj = (Dj1| · · · |Djp) where Dj is a lj+1 ×
∑p
j′=1,j′ 6=j lj′ matrix. Now we

create the term frequency (TF) and inverse document frequency (IDF) matrices as follows:

TDj(cjk, cj′k′) =
f (cjk, cj′k′)− µcjk

σcjk

IDj(cjk, cj′k′) = T
DT
j

(cj′k′, cjk)T

where µcjk = 1
nj

∑p
j′=1
j′ 6=j

∑lj′
k′=1

f (cjk, cj′k′), σ
2
cjk

= 1
nj−1

∑p
j′=1
j′ 6=j

∑lj′
k′=1
{f (cjk, cj′k′) −

µcjk}
2, and nj =

∑p
j′=1
j′ 6=j

lj′. TF is the distribution of words that describe the document

and IDF is the impact factor of those words. IDF penalizes useless words.

Our proposed TIWS is the common standardization procedure for both TF and IDF
due to its ubiquitious use in statistics but they can be uniquely defined depending on
the context. Let g(A,B) be a transformation function that aggregates two matrices A
and B. Let HDj = g(TDj, IDj) be the aggregation matrix which uses the Hadamard

(element-wise) multiplication. One can utilize a similarity metric s(cjk, cjk′) to describe
the similarity between two row vectors of HDj at categories cjk and cjk′, and create a

symmetric similarity matrix S that includes all pairwise similarities. Here, we choose a
modified cosine similarity[1], which is defined as

s(cjk, cjk′) =
1

2
+

1

2
·

HDj(cjk)HDj(cjk′)
T√

HDj(cjk)⊗2
√
HDj(cjk′)

⊗2

where HDj(cjk) is the row vector of HDj matrix at category cjk, and a⊗2 = aa′ for a

row vector a. It is recommended that s(cjk, cjk′) ∈ [0, 1] since the similarity coefficients
will be used as weights to find the predicted value of the target parameter of the unseen
category. Finally, the unseen category cjlj+1

is defined by

ŷjlj+1 =

∑lj
k=1 s(cjk, cjlj+1

) · ŷjk∑lj
k=1 s(cjk, cjlj+1

)

Algorithmic Complexity
TWIS is very similar to the kNN [3] algorithm except the kNN algorithm sets the weights

to be proportion of a category selected, kNNcjlj+1
=

lj∑
k=1

pjk·ŷjk
lj∑
k=1

pjk

. However, kNN uses

information within a local bound in an iterative fashion whereas TIWS uses information
in a one-shot aggregate fashion. The time complexity for TIWS is O((n + n∗) · lj+m)
and space complexity of O((n + n∗) · lj+m) for the temporary similarity matrix S.

Multiple Unseen Categories
Suppose there are multiple unseen categories in the test set for the jth feature. Then
we only need to be working with the document matrix Dj and its similarity matrix Sj.
When deriving the Dj it is important to note that we are taking frequency counts of all
cjk for j = 1, ..., p and k = 1, ..., lj in X . However, a TIWS estimate for an unseen ŷjlj+a
for does not use any information from any other unseen category cjlj+b for a = 1, ...,m

and b = 1, ...,m where a 6= b and for m = 1, ..,∞ unseen categories. The derivation is
described in the following:
We set diag(Sj) to 0 or s(cji, cjk) = 0 for i = k for i = 1, ..., ljlj+m and k = 1, ..., ljlj+m.

~c =

0 s(cj2, cj1) ... s(cjlj+1

, cj1) s(cjlj+m, cj1)

s(cj2, cj1) 0
... ... 0

s(cjlj+1
, cj1) 0 ...

s(cjlj+m, cj1) 0

ŷj1
ŷj2

...
0
...
0

Notice that ~c[lj+1] =

lj+m∑
i=1

s(cjlj+1
, cji)ŷji =

lj+m∑
i 6=lj+1
i=1

s(cjlj+1
, cji)ŷji since we set

s(cji′, cji) = 0 for i = i′ for i = 1, ..., p′ and for i′ = 1, ..., p. Also notice that ~c[lj+1] does

not contain ŷjlj+1
. To get the TIWS estimate for ĉjlj+1

simply equate ŷjlj+1
= ~c[lj+1].

So for multiple unseen categories {ŷjlj+1
, ..., ŷjlj+m} we can simply grab ~c[lj+1:lj+m] for

those TIWS estimates. Distribute the remaining weights that were set to 0 equally among

all reference categories i.e. distribute 1 - 1
m

lj+m∑
i 6=lj+1
i=1

s(cjlj+1
, cji)ŷji. The case of multiple

unseen categories across multiple features is simply an iterative extension.

Simulated Studies

We performed simulations to determine whether the TF-IDF information was able to cor-
rectly identify the similarity between an unseen category and the seen categories based
on the underlying data generation process. We consider three cases strong, slight devi-
ates, and complete mix which refers to the set of features correlations between categories
across four different scenarios completely random, single unseen category, multiple unseen
categories within a single feature, and multiple unseen categories across multiple features.
Due to limited spacing, the single unseen category results are displayed but the TF-IDF
similarity selection was correct across all scenarios.

Table 1: Results for unseen categories in a single feature

Strong Features Slight Deviates Complete Mix
A B A B A B

Count 100 0 100 0 99 1
µweight 0.663 0.336 0.611 0.388 0.607 0.392

For 100 simulation runs with 1000 samples each, we set A and B to be the seen categories.
For the same feature, we let C be the unseen category and setting A & C to have the
same distribution. There were 7 other categorical features with a total of 18 categories.
We see that TF-IDF information correctly selected A to be most similar with C and the
corresponding mean similarity weight.

Case Studies

Preliminary TIWS applications were used on the Titanic and Wake County Sudden Death
data. However, due to limited spacing, only an interesting case in the Titanic data will be
displayed. Here we set the unseen category for the embarked = Q feature to be unseen.

Table 2: Diverging performance between kNN & TIWS

Unseen Categories {embarkedQ} (n=62)

Method Accuracy Precision Recall
kNN (20) 68.83% 68.47 % 36.53%
kNN (40) 68.83% 68.47 % 36.53%
kNN (80) 68.83% 68.47 % 36.53%
TIWS 77.9% 69.33% 76.47%

embarked consisted of only three categories {S,C,Q}. For every observation,
embarkedQ was most similar to embarkedS for the kNNs, but TIWS determined that
embarkedQ was most similar to embarkedC . This may be due to the number of observa-
tions per class {S,C,Q} → {644, 168, 77}. So there was a much higher chance that the
majority of the nearest neighbors consisted of embarkedS. TIWS performed significantly
better across all metrics and folds. This highlights a limitation of kNN since kNN can be
very near-sighted. Across various cases in both data, TIWS performed similarly to kNN
on average this was highlighted in the Algorithmic Complexity portion. However,
there are clear benefits to TIWS since it is able to draw bootstrapped or jackknifed esti-
mates, automate clustering, and penalize unimportant features. We then introduce Jitter
Trees, an algorithm where for a categorical split an observation in the new category will
follow a path with probability of the sum of the similarities. This portion is still a work
in progress as a similarity index is NOT a probability.

References

[1] Li B. and Han L.“Distance Weighted Cosine Similarity Measure for Text Classification”. In: Intelligent
Data Engineering and Automated Learning – IDEAL 2013 (2013).

[2] A.V. Dorogush et al. “CatBoost: Unbiased Boosting with Categorical Features”. In: In Advances in
Neural Information Processing Systems (2018).

[3] E. Fix and J.L. Hodges. “Discriminatory Analysis, Nonparametric Discrimination: Consistency Prop-
erties”. In: USAF School of Aviation Medicine, Randolph Field (1951).

