

301131 Comparison of Several Bayesian Methods for Basket Trials When a Control of Subgroup-Wise Error Rate Is Required

Introduction

Notation: Assuming RR is $\pi_i^{(0)}$ when the drug is inefficacious, $\pi_i^{(1)}$ when the drug is efficacious.

- Subgroup-specific analysis (SS) is the conventional approach in basket trials that assess the efficacy of a new agent across multiple histological subtypes in one trial.
- The notable power gain is expected if one assumes homogeneity of response rates (RRs) in each subgroup and borrows information across subgroups by using a hierarchical Bayesian model (HBM)^{1,5}
- However, the power gain is seriously lost when "subgroup-wise" (type-I) error rate (SWER) needs to be controlled in a strong sense². • For example, in BRAF V600E trial with 6 cancer diseases (described at the later section: "Examples"), the null scenario for CRC.v has total of
- $32 (= 2^{6-1})$ variations. The strong control of SWER indicates that the type-I error rate in CRC.v is controlled at the nominal level under all possible variations that investigators concern
- Note that, SWER rises in proportion to η_i , which is the threshold value for the decision making (defined at "Methods" section). Also, in a simple situation where RRs in each subset are either $\pi_i^{(0)}$ or $\pi_i^{(1)}$, the SWER is maximized when RR of CRC equals $\pi_i^{(0)}$ and those of the rest equal $\pi_i^{(1)}$ $(\pi_i^{(0)} \text{ and } \pi_i^{(1)} \text{ is defined at "Methods" section})$
- Therefore, to control SWER in a strong sense, more stringent values of η_i must be used.
- Unfortunately, according to the numerical studies by Freidlin and Korn², the power of HBM was equivalent or worse than that of SS in various scenarios when a strong control of SWER is required
- From a regulatory and patients' perspective, an unnecessary recommendation of inefficacious treatment for further evaluation in future clinical trials or drug labeling should be avoided, and thus, a strong control of SWER is one of vital aspects for actual applications.
- Several newer methods have been proposed; e.g. exchangeability-nonexchangeability model (EXNEX)⁴ and multisource exchangeability model (MEM)^{3,} but their performance was not fully investigated in the situation where a strong control of SWER is required.

Objective

To compare the performance of EXNEX and MEM under the control of SWER, setting HBM and SS as a benchmark.

Examples

• BRAF V600E trial⁶ (for case study) (NCT01524978)

- The primary endpoint was RR based on an imaging at 8 weeks.
- For illustrative purposes, we here focus on the results of NSCLC, cholangiocarcinoma (bile duct or BD), Erdheim-Chester disease or Langerhans' cell histiocytosis (ED.LH), anaplastic thyroid cancer (ATC), colorectal cancer with monotherapy (CRC.v) and CRC with a combined therapy (CRC.vc).
- The primary endpoint is RR.

Case study

- We applied the methods described in "Methods" to BRAF V600E study.
- Common values of $\pi_{0i} = 15\%$ and $\pi_{1i} = 45\%$ were considered.
- We compared following methods (mean priors were modified)
- SS: RR is S_i/n_i and Clopper-Pearson 95% CI is estimated
- HBM moderate borrowing
- $\mu \sim N(-0.847, 10)$ (centered at logit(0.3))
- HBM strong borrowing
- Same mean prior as HBM moderate borrowing
- EXNEX moderate borrowing
- $\mu_{EX0} \sim N(-1.735, 6.843)$ (centered at logit(0.15))
- $\mu_{EX1} \sim N(-0.201, 3.040)$ (centered at logit(0.45))
- NEX model: $\theta_i \sim N(-0.847, 4.762)$ (centered at logit(0.3)) • EXNEX strong borrowing
- Same mean priors as EXNEX moderate borrowing
- MEM
- EX-clustering
 - Clustering model:
 - $\mu_{EX0} \sim N(-1.735, 3.76)$ and $\mu_{EX1} \sim N(-0.201, 3.76)$ • Analytical model:
 - HBM strong borrowing for the efficacious cluster
 - EXNEX moderate borrowing for the inefficacious cluster

Gakuto Ogawa¹, Shogo Nomura²

1: Biostatistics Division, Center for Research Administration and Support, National Cancer Center Japan. 2: Department of Biostatistics and Bioinformatics, Graduate School of Medicine, The University of Tokyo