Sequential Multiple Assignment Randomized Trial for COMparing Personalized Antibiotic Strategies (SMART COMPASS): Design Considerations

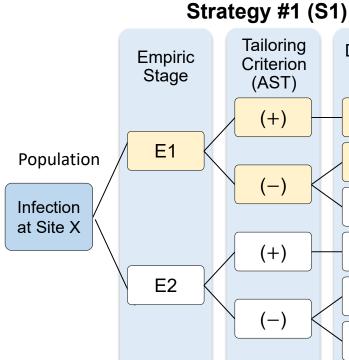
Xiaoyan Yin, Toshimitsu Hamasaki, Scott R. Evans

The Biostatistics Center, The George Washington University

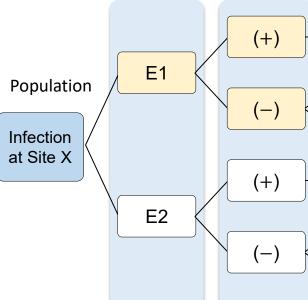
Introduction – Background and Research Objectives

- A sequence of decisions with adjustment to therapy made over time in patients' management- Adjustments tailored to individual patients as new information about those patients becomes available
- Two therapeutic decision points in the treatment of serious bacterial infections
- **Empiric therapy** selected based on the clinicians' best judgment given the immediately available and often limited information upon recognition of the clinical syndrome
- **Definitive therapy** selected once organism identification, antibiotic susceptibility testing (AST) results, tolerability, and clinical course of the patient are known
- **SMART COMPASS:** a pragmatic design, mirroring antibiotic treatment decision-making as they unfold in clinical practice and addressing the most relevant question for treating patients: identification of the patient-management strategy that optimizes ultimate patient outcomes

Example of SMART COMPSS Deigns

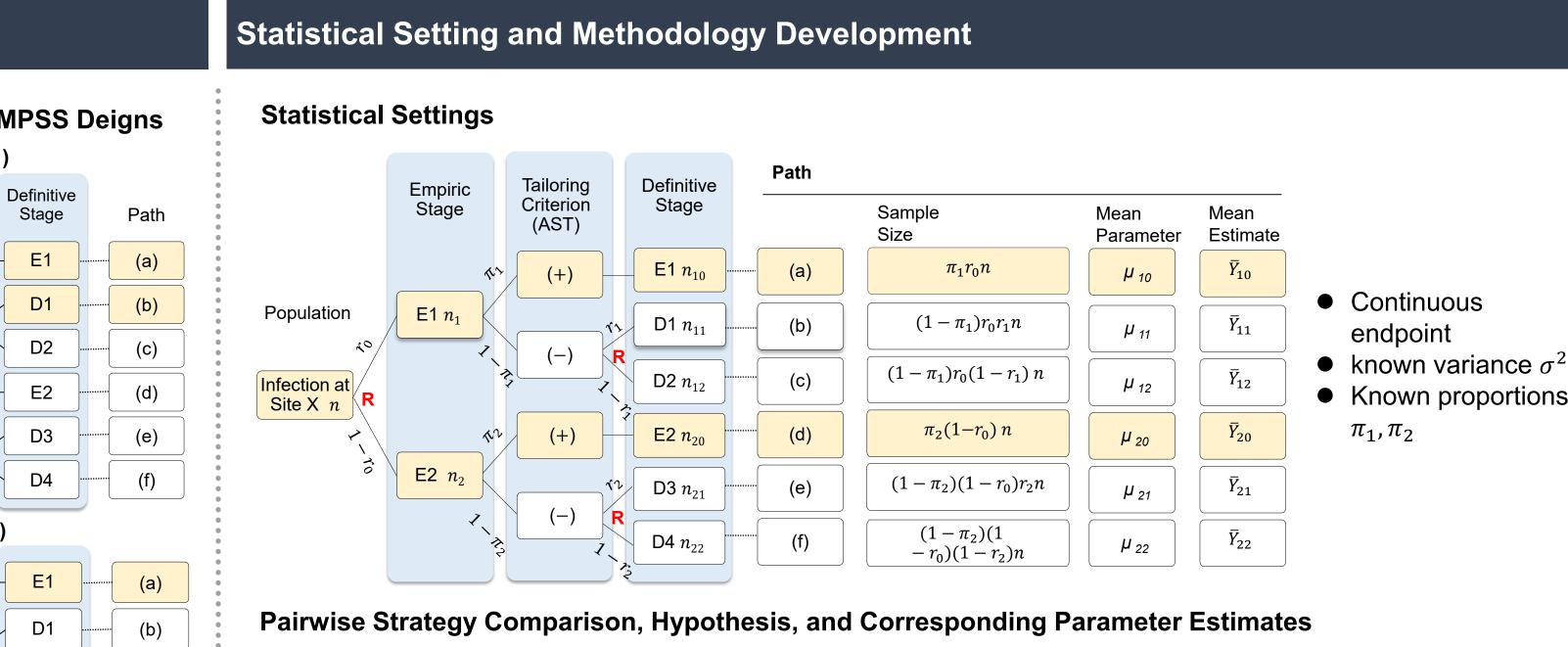


Strategy #2 (S2)



Example Hypotheses **Research Questions** (Contrast of Interest) Q1: Comparisons of empiric E1 is better than E2 under therapies coupled with AST=S (paths (a) vs. (d)) subsequent therapies: relevant Strategy #3 (S3) for clinicians triaging patients making empiric therapy decisions (+) without knowledge of definitive F1 therapy options and decisions. Population (-)Q2: Comparisons of definitive D1 is better than D2 Infection at Site X therapy conditioning on (paths (b) vs. (c)) empiric therapy: relevant E2 antibiotic drug developers as trials in the regulatory development paradigm comparing drugs Strategy #4 (S4) **Q3**: Pairwise S1 is better than S2 (+)**Comparisons of** strategy (paths (a)+(b) vs. (a)+(c)) E1 Population strategies: comparison relevant for S1>S2>S3>S4 (paths (a)+(b) Identification Infection clinicians planning at Site X of best vs. (a)+(c) vs. (d)+(e) vs. a sequential (+)(d)+(f))strategy clinical course of E2 treatment for patients

(+): S and tolerable; (-): Re or intolerable



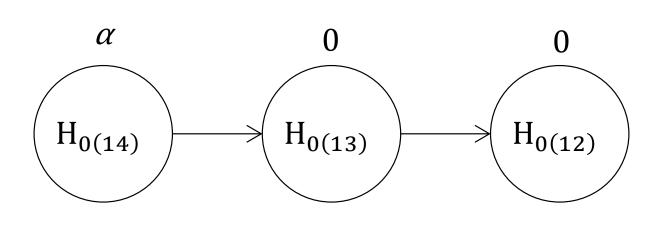
Strategy Comparison	Parameter	arameter Hypothesis					
S1 vs. S2	$\delta_{12} = \mu_{S1} - \mu_{S2}$		$\hat{\delta}_{12} = \frac{\pi_1 \bar{Y}_1}{\pi}$				
S1 vs. S3	$\delta_{13} = \mu_{S1} - \mu_{S3}$		$\mathrm{H}_0: \delta_{13} \leq 0 \; \mathrm{VS} \; \mathrm{H}_1:$	$\delta_{13} > 0$	$\hat{\delta}_{13} = \frac{\pi}{2}$		
Strategy Comparison	Test Statistic		$E[\hat{\delta}_{ij}]$				
S1 vs. S2	$Z_{12} = \frac{\hat{\delta}_{12}}{\operatorname{Var}[\hat{\delta}_{12}]}$	$\mathbf{E}[\hat{\delta}_{12}] = \frac{\pi}{2}$	$\frac{\pi_1 \mu_{10} + r_1 (1 - \pi_1) \mu_{11}}{\pi_1 + r_1 (1 - \pi_1)} - \frac{\pi_1 \mu_{11}}{\pi_1 + r_1 (1 - \pi_1)}$	$\frac{\mu_{10} + (1 - r_1)(1 - \pi_1)\mu_{12}}{\pi_1 + (1 - r_1)(1 - \pi_1)}$	$\operatorname{Var}[\hat{\delta}_{12}] = \hat{\delta}_{12}$		
S1 vs. S3	$Z_{13} = \frac{\hat{\delta}_{13}}{\operatorname{Var}[\hat{\delta}_{13}]}$	$\mathrm{E}[\hat{\delta}_{13}]$:	$=\frac{\pi_1\mu_{10}+r_1(1-\pi_1)\mu_{11}}{\pi_1+r_1(1-\pi_1)}-\frac{\pi_1}{2}$	$\frac{\pi_2 \mu_{20} + r_2 (1 - \pi_2) \mu_{21}}{\pi_2 + r_2 (1 - \pi_2)}$	$\operatorname{Var}[\hat{\delta}_{13}] = \frac{\sigma^2}{n}$		
Strategy Comparison		N _{ij}					
S1 vs. S2	$N_{12} = \begin{cases} N_{12}^* , \\ [N_{12}^*] + 1, \end{cases}$		if N^*_{12} is integer, otherwise,	$N_{12}^* = \frac{\sigma^2 (z_{1-\alpha} + z_{1-\beta})^2}{(\delta_{12}^*)^2} \bigg\{ \frac{1}{r_0} \bigg\}$			
S1 vs. S3	$N_{13} = \begin{cases} N_{13}^* \\ [N_{13}] \end{cases}$	₃ , ₁₃] + 1,	if N^*_{13} is integer, otherwise,	$N_{13}^* = \frac{\sigma^2 (z_{1-\alpha} + z_{1-\alpha})}{(\delta_{13}^*)}$	$+ \frac{z_{1-\beta}}{2}^{2} \left\{ \frac{1}{r_{0}(\pi_{1})^{2}} \right\}$		
41	·					

 μ_{Si} : the mean of the strategy *i*, and estimated by weighting the paths' sample means; i = 1, ..., 4; δ_{ii}^* : the clinically meaningful difference; $\delta_{ii} = 1, ..., 4$; δ_{ii}^* : the clinically meaningful difference; $\delta_{ii} = 1, ..., 4$; δ_{ii}^* : the clinically meaningful difference; $\delta_{ii} = 1, ..., 4$; δ_{ii}^* : the clinically meaningful difference; $\delta_{ii} = 1, ..., 4$; δ_{ii}^* : the clinically meaningful difference; $\delta_{ii} = 1, ..., 4$; δ_{ii}^* : the clinically meaningful difference; $\delta_{ii} = 1, ..., 4$; δ_{ii}^* : the clinically meaningful difference; $\delta_{ii} = 1, ..., 4$; δ_{ii}^* : the clinically meaningful difference; $\delta_{ii} = 1, ..., 4$; δ_{ii}^* : the clinically meaningful difference; $\delta_{ii} = 1, ..., 4$; δ_{ii}^* : the clinically meaningful difference; $\delta_{ii} = 1, ..., 4$; δ_{ii}^* : the clinically meaningful difference; $\delta_{ii} = 1, ..., 4$; δ_{ii}^* : the clinically meaningful difference; $\delta_{ii} = 1, ..., 4$; δ_{ii}^* : the clinically meaningful difference; $\delta_{ii} = 1, ..., 4$; δ_{ii}^* : the clinically meaningful difference; $\delta_{ii} = 1, ..., 4$; $\delta_{ii} = 1, ..., 4$; δ_{ii}^* : the clinically meaningful difference; $\delta_{ii} = 1, ..., 4$; $\delta_{ii} = 1, ..., 4$ $\mu_{Si} - \mu_{Si}$; $i, j = 1, ..., 4, i \neq j$; N_{ij} : the total sample size required for the entire trial determined by the pairwise strategy comparison Si vs. Sj.

Procedure for Identifying the Best Strategy

Step 1: Order the estimated mean values $\hat{\mu}_{S(1)}$, $\hat{\mu}_{S(2)}$, $\hat{\mu}_{S(3)}$ and $\hat{\mu}_{S(4)}$, where $\hat{\mu}_{S(4)} < \hat{\mu}_{S(3)} < \hat{\mu}_{S(2)} < \hat{\mu}_{S(1)}$.

Step 2: Test each hypothesis with the order of $H_{0(14)} \rightarrow$ $H_{0(13)} \rightarrow H_{0(12)}$ at the significance level of α as long as significant results are observed in all preceding tests.



E1

E1

(a)

(a)

Milken Institute School of Public Health

THE GEORGE WASHINGTON UNIVERSITY

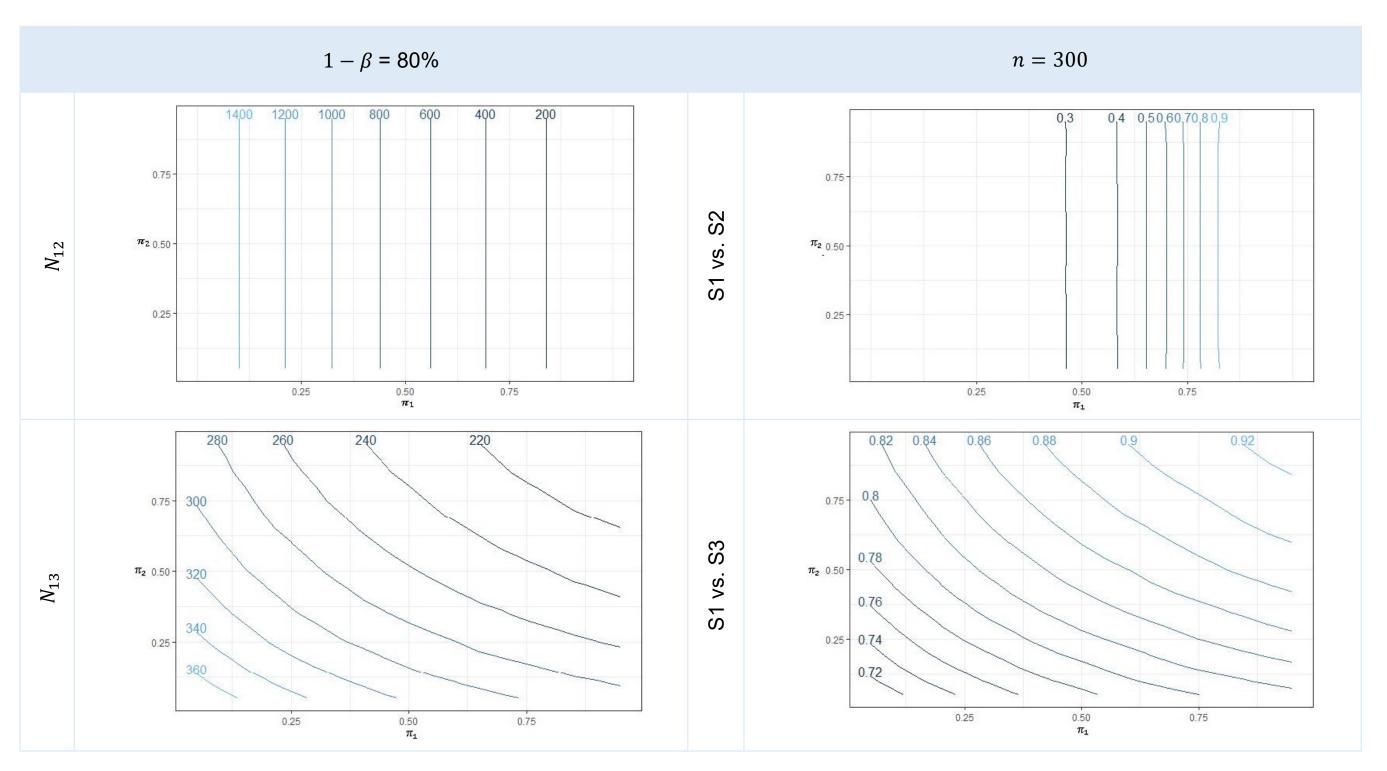
6110 Executive Blvd., Rockville, Maryland, 20852. Email xyin@bsc.gwu.edu

Power and Sample Size Assessment via Simulation

$$\begin{split} \hat{\delta}_{ij} &= \hat{\mu}_{Si} - \hat{\mu}_{Sj} \\ \\ \frac{\bar{Y}_{10} + r_1(1 - \pi_1)\bar{Y}_{11}}{\pi_1 + r_1(1 - \pi_1)} - \frac{\pi_1\bar{Y}_{10} + (1 - r_1)(1 - \pi_1)\bar{Y}_{12}}{\pi_1 + (1 - r_1)(1 - \pi_1)} \\ \\ \frac{\pi_1\bar{Y}_{10} + r_1(1 - \pi_1)\bar{Y}_{11}}{\pi_1 + r_1(1 - \pi_1)} - \frac{\pi_2\bar{Y}_{20} + r_2(1 - \pi_2)\bar{Y}_{21}}{\pi_2 + r_2(1 - \pi_2)} \\ \\ &\quad \text{Var}[\hat{\delta}_{ij}] \\ \\ = \frac{\sigma^2}{n} \left\{ \frac{1 - \pi_1}{r_0(\pi_1 + r_1(1 - \pi_1))(\pi_1 + (1 - r_1)(1 - \pi_1))} \right\} \\ \\ \\ \frac{\sigma^2}{n} \left\{ \frac{1}{r_0(\pi_1 + r_1(1 - \pi_1))} + \frac{1}{(1 - r_0)(\pi_2 + r_2(1 - \pi_2))} \right\} \\ \\ \\ N_{ij}^* \\ \\ 1 - \pi_1 \end{pmatrix} \end{split}$$

$$\frac{1}{(\pi_1 + r_1(1 - \pi_1))(\pi_1 + (1 - r_1)(1 - \pi_1))}$$

$$\frac{1}{(1 + r_1(1 - \pi_1))} + \frac{1}{(1 - r_0)(\pi_2 + r_2(1 - \pi_2))}$$



π_1	<i>π</i> ₂	n	Marginal Power			Conditional Power	
			$\Pr[H_{1(12)}]$	$\Pr[H_{1(13)}]$	$\Pr[H_{1(14)}]$	$\Pr[H_{1(13)} H_{1(14)}]$	$\Pr[H_{1(12)} H_{1(13)}\cap H_{1(14)}]$
0.1	0.1	1352	0.801	>0.999	>0.999	>0.999	0.801
	0.5	1352	0.800	>0.999	>0.999	>0.999	0.800
	0.9	1351	0.801	>0.999	>0.999	>0.999	0.801
0.5	0.1	691	0.803	0.986	>0.999	0.986	0.800
	0.5	684	0.801	0.995	>0.999	0.995	0.800
	0.9	683	0.802	0.997	>0.999	0.997	0.800
0.9	0.1	299	0.999	0.819	0.990	0.816	0.800
	0.5	241	0.993	0.811	0.989	0.810	0.804
	0.9	217	0.980	0.813	0.990	0.812	0.800

 $r_0 = r_1 = r_2 = 0.5; \ \sigma^2 = 1; \ \mu_{10} = 1.0, \ \mu_{20} = 0.5, \ \mu_{S1} = 1.0, \ \mu_{S2} = 0.8, \ \mu_{S3} = 0.6 \text{ and } \ \mu_{S4} = 0.4. \\ \mu_{S(1)} = \mu_{S1}, \ \mu_{S(2)} = \mu_{S2}, \ \mu_{S(3)} = \mu_{S3} \text{ and } \ \mu_{S(4)} = \mu_{S4}, \ \mu_{S4$ and $\delta_{(12)} = \delta_{12} = 0.2$, $\delta_{(13)} = \delta_{13} = 0.4$ and $\delta_{(14)} = \delta_{14} = 0.6$.

Findings from Simulations

- For pairwise comparisons, when comparing S1 and S2, the required sample size N_{12} increases as π_1 goes to zero, but is unaffected by $\pi_2 \leftarrow$ less "shared" participants (smaller π_1) decrease size of variance of $\hat{\delta}_{12}$.
- When comparing S1 with S3, the required sample size N_{13} increases as π_1 and/or π_2 go to zero \leftarrow the size of variance for $\hat{\delta}_{13}$ becomes larger with smaller π_1 and/or π_2 .
- If π_1 is less than 0.6, the power to detect $\delta_{(12)}$ is smaller than that for $\delta_{(13)}$.
- For identify the best strategy, the required sample size n gradually deceases with higher π_1 . Under the fixed π_1 , n tends to be smaller with larger values of π_2 . This tendency becomes clearer with higher π_1 .

THE BIOSTATISTICS CENTER