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Abstract

Acute liver failure (ALF) refers to the rapid loss of liver function and can
cause serious complications. According to Lee (2013), it is estimated that
annually in the U.S. there are approximately 2000 people experiencing
ALF, among which about 60% are drug-induced liver injury (DILI), i.e. ALF
caused by approved drugs.

DILI is also a major reason for NDA rejection and removal of drug from
the market. Over the past 25 years there have been numerous regulatory
actions due to DILI, including the withdrawals of bromfenac and
troglitazone, and warnings to acetaminophen. It is worth noting that in
many cases the drug is not particularly dangerous, but a small number of
patients may be especially susceptible to the hepatotoxic effect.

The Hy’s Law (Temple 2001; Reuben 2004), which was based on the
observation that hepatocellular injury causing hyperbilirubinemia is an
ominous indicator of DILI, has the following components: 1. alanine
aminotransferase (ALT) or aspartate aminotransferase (AST) > 3x upper
limit of normal (ULN); 2. total bilirubin (TBL) > 2x ULN; and 3. not
primarily cholestatic; not caused by disease but by drug. Based on the
Hy’s Law, the FDA’s developed evaluation of Drug-Induced Serious
Hepatotoxicity (eDISH), which is an analytical tool focusing on ALT/AST
and TBL elevations to find identify rare subjects of special interest from
large controlled clinical studies.

Exposure-response analyses are critical in determining safety and
effectiveness levels and dosages of drugs. Such analyses usually
complement primary efficacy and safety analysis and are used to support
new target population, dose regimen, formulation, etc.

Drug-induced liver injuries (DILI) caused by therapeutic drugs are serious
and sometimes even fatal in some patients and have resulted in
disapproval of new drugs and removal of approved drugs from the
market. To evaluate DILI, both the widely accepted Hy’s law and the
FDA’s evaluation of drug-induced serious hepatotoxicity (eDISH) program
focus on two key liver chemistry tests, namely alanine aminotransferase
(ALT) and total bilirubin (TBL). An association of elevated ALT and TBL
with drug exposure would indicate a high DILI risk to subjects exposed,
especially to those with high exposures. Despite the fact that ALT and
TBL elevations are generally correlated and may be associated with
different risk factors, in practice exposure-response analyses are usually
performed individually for these two measures with the same set of
covariates considered in each analysis.

In this work, simulated continuous and categorical (binary and ordinal)
data are used to compare statistical methods for correlated bivariate data
for assessing the relationship between drug exposure and ALT/TBL
elevations. Model recommendations are provided for different data
assumptions, although it was found that the appropriate method to use is
largely dependent on the objective and available data. These statistical
models for correlated continuous and categorical data are applied in the
exposure-safety analyses of an AbbVie dataset to predict the safety
impact under scenarios of increased exposures. The results are
compared with those from the univariate models to demonstrate the
advantages of the joint analysis.
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Bivariate Logistic and Ordinal Regression Models Application to A Real Case Exposure-Safety Analysis

Introduction

Conclusion
Bivariate logistic and ordinal regression models not only account for the
correlation between the two clinical outcomes of interest, namely ALT and
TBL elevations, but also provide unbiased and efficient predictions of the
joint outcome of simultaneous ALT and TBL elevation, which is one of the
key criteria in DILI assessments.

Reference

Models for continuous outcomes with normal (or other) error structures 
may not be a good fit for DILI assessment with ordinal clinical outcomes. 
Traditionally, univariate binary logistic models have been used to 
individually assess ALT and TBL elevations (e.g. ≥ Grade 2). However, 
these models do not account for the correlation between these two 
events. Moreover, with these models one cannot predict events of 
simultaneous ALT and TBL elevations, which is the key question to be 
addressed in DILI assessment. To this end, it would make perfect sense 
to use bivariate binary and ordinal models for analyzing ALT and TBL 
data in DILI assessment.

According to Palmgren (1989), the stochastic component of the bivariate 
logistic regression model can be written as:

𝑌 ~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 𝜋
𝑌 ~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 𝜋
𝑌 ~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 𝜋

where 𝜋 Pr 𝑌 𝑟, 𝑌 𝑠 , and 𝜋 1 𝜋 𝜋 𝜋 .
The marginal probabilities and the odds ratio can be modeled by:

𝜋  , for 𝑗 1,2

𝜑 𝜋 𝜋 /𝜋 𝜋 𝑒𝑥𝑝 𝑥 𝛽
Solving for 𝜋 using

𝜋 𝜋 𝜋
𝜋 𝜋 𝜋

𝜋 1 𝜋 𝜋 𝜋
𝜑 𝜋 𝜋 /𝜋 𝜋

gives 𝜋 , where 𝑎 1 𝜑; 𝑏 1 1 𝜑 𝜋 𝜋 ; 𝑐
𝜑𝜋 𝜋 .

Cumulative links can be used for modeling ordinal responses. We 
assume observed category 𝑌 come from an underlying latent variable 𝑌
with 𝑌 𝛽 𝒙 𝜷 𝜖 , where 𝜖 is the error with zero mean and 
distribution function 𝐹, and 𝑌 𝑟 iff 𝜃 𝑌 𝜃 , 𝑟 ∈ 1, … , 𝐾 , where 

∞ ≡ 𝜃 𝜃 ⋯ 𝜃 𝜃 ≡ ∞. Let 𝜋 be the probability that 
observation 𝑖 falls in category 𝑟, then the cumulative link model 
(McCullagh 1980) is 𝑃 𝑌 𝑟 𝑃 𝛽 𝒙 𝜷 𝜖 𝜃 𝐹 𝜃 𝛽
𝒙 𝜷 𝜋 ⋯ 𝜋 . Typical choices for 𝐹 are normal and logistic 
distributions.

To create a bivariate ordinal regression model, two ordinal outcomes, 
each following a univariate cumulative link model marginally, were linked 
with a joint error distribution, i.e.

𝑌 𝑟 iff 𝜃 , 𝑌 𝜃 , ,𝑟 ∈ 1, … , 𝐾 ,
where

∞ ≡ 𝜃 , 𝜃 , ⋯ 𝜃 , 𝜃 , ≡ ∞
𝑌 𝛽 𝒙 𝜷 𝜖

The link function can be customized based on distribution assumptions, 
with typical choices between multivariate probit (i.e. multivariate normal 
error) and multivariate logit involving errors with t copula (O’Brien and 
Dunson 2004).

Varin, Reid, and Firth (2011) provided model estimation using pseudo-
likelihood by aggregating likelihoods from marginal distributions. An R 
package ‘mvord’ is available for implementing composite likelihood in 
estimating probit and logit models for multivariate ordinal outcomes.

Simulation Setup:
• Explanatory variables: 𝐿𝐴𝑈𝐶 ~ 𝑁 8.55,1 ; 

𝐵𝑆𝐴𝐿𝑇 ~ 𝐺𝑎𝑚𝑚𝑎 3.5,0.05 ; 𝐵𝑆𝐵𝐼𝐿 ~ 𝐺𝑎𝑚𝑚𝑎 20,2
• ALT Elevation: 𝑌 𝛽 𝒙 𝜷𝟏 𝜖 , 𝑌 G0 𝑈𝐿𝑁 G1 3

𝑈𝐿𝑁 G2 5 𝑈𝐿𝑁 G3 20 𝑈𝐿𝑁 G4 𝑈𝐿𝑁 43 𝑈/𝐿
• TBL Elevation: 𝑌 𝛽 𝒙 𝜷𝟐 𝜖 , 𝑌 G0 𝑈𝐿𝑁 G1 1.5

𝑈𝐿𝑁 G2 3 𝑈𝐿𝑁 G3 10 𝑈𝐿𝑁 G4 𝑈𝐿𝑁 20.52 𝜇𝑚𝑜𝑙/𝐿
• Variance and Correlation: 𝜎 10, 𝜎 20, 𝜌 0.3
• Binary Model: 𝜋 , 𝜋 , 𝜑 1.2, 3, 10
• Sample Size: 𝑛 1000; Number of Iteration: 𝑚 1000

Simulation Studies

 m
/uni

LAUC1
(0.4)

BSALT1
(0.005)

LAUC2
(0.8)

BSBIL2
(0.17) LAUC BSALT BSBIL

Mean
(Sd)

1.2 1000
/657

0.4011
(0.1639)

0.0045
(0.0040)

0.8052
(0.2740)

0.1674
(0.1116)

1.9466
(5.7156)

-0.0052
(0.1636)

0.3593
(2.8183)

3 1000
/912

0.4033
(0.1662)

0.0045
(0.0042)

0.8155
(0.2676)

0.1673
(0.1008)

2.1577
(7.3569)

-0.0156
(0.1755)

0.1396
(2.0627)

10 1000
/994

0.4027
(0.1689)

0.0046
(0.0040)

0.8320
(0.2748)

0.1663
(0.1074)

1.2140
(2.4118)

-0.0014
(0.0304)

0.1052
(0.5528)

 AU
C      


Univariate

Pred
(Obs)

1.2
1x 0.0415 

(0.0416)
0.0168 

(0.0167)
0.9428 

(0.9428)
0.0404 

(0.0405)
0.0157 

(0.0156)
0.0011 

(0.0011)
0.0016 

(0.0011)

5x 0.0771
(0.0758)

0.0580 
(0.0557)

0.8711 
(0.8749)

0.0709 
(0.0694)

0.0518 
(0.0493)

0.0062 
(0.0063)

0.0166
(0.0063)

3
1x 0.0423 

(0.0422)
0.0170 

(0.0170)
0.9431 

(0.9432)
0.0399 

(0.0398)
0.0146 

(0.0146)
0.0024 

(0.0024)
0.0026 

(0.0024)

5x 0.0788
(0.0769)

0.0598 
(0.0568)

0.8738 
(0.8784)

0.0664 
(0.0648)

0.0474 
(0.0447)

0.0124 
(0.0121)

0.0211
(0.0121)

10
1x 0.0410 

(0.0410)
0.0165 

(0.0163)
0.9477 

(0.9477)
0.0359 

(0.0360)
0.0113 

(0.0112)
0.0052 

(0.0051)
0.0052 

(0.0051)

5x 0.0766
(0.0748)

0.0590 
(0.0546)

0.8866 
(0.8920)

0.0543 
(0.0534)

0.0368 
(0.0331)

0.0222 
(0.0214)

0.0289
(0.0214)

Simulation Result (Binary Outcomes):

Simulation Result (Ordinal Outcomes with Proportional Odds):
Observed TBL Elevation

<G2 ≥G2 Total
ALT 

Elevatio
n

<G2 0.504 0.408 0.913
≥G2 0.038 0.049 0.087
Total 0.543 0.457 1.000

Ordinal
Error Mean

TBL Elevation
<G2 ≥G2

ALT 
Elevatio

n

<G2 -0.00013 0.00021

≥G2 0.00013 -0.00022

Binary
Error Mean

TBL Elevation
<G2 ≥G2

ALT 
Elevatio

n

<G2 -0.00018 0.00029

≥G2 0.00017 -0.00028

Observed TBL Elevation
<G3 ≥G3 Total

ALT 
Elevatio

n

<G3 0.918 0.061 0.979
≥G3 0.020 0.001 0.021
Total 0.938 0.062 1.000

Ordinal
Error Mean

TBL Elevation
<G3 ≥G3

ALT 
Elevatio

n

<G3 0.00000 ‐0.00007

≥G3 ‐0.00002 0.00008

Binary
Error Mean

TBL Elevation
<G3 ≥G3

ALT 
Elevatio

n

<G3 NA NA

≥G3 NA NA

Observed TBL Elevation
<G2 ≥G2 Total

ALT 
Elevatio

n

<G2 0.682 0.258 0.940
≥G2 0.041 0.019 0.060
Total 0.723 0.277 1.000

Ordinal
Error Mean

TBL Elevation
<G2 ≥G2

ALT 
Elevatio

n

<G2 0.00130 ‐0.00118

≥G2 ‐0.00032 0.00020

Binary
Error Mean

TBL Elevation
<G2 ≥G2

ALT 
Elevatio

n

<G2 0.00011 ‐0.00014

≥G2 0.00002 0.00002

Observed TBL Elevation
<G3 ≥G3 Total

ALT 
Elevatio

n

<G3 0.959 0.025 0.984
≥G3 0.015 0.000 0.016
Total 0.975 0.026 1.000

Ordinal
Error Mean

TBL Elevation
<G3 ≥G3

ALT 
Elevatio

n

<G3 ‐0.00045 0.00044

≥G3 0.00003 ‐0.00002

Binary
Error Mean

TBL Elevation
<G3 ≥G3

ALT 
Elevatio

n

<G3 NA NA

≥G3 NA NA

Simulation Result (Ordinal Outcomes with Non-Proportional Odds):

ALT≥G2
%

TBL≥G2
%

ALT≥G2 
& 

TBL≥G
2
%

1x Product A AUC 0.453 2.46 0.0376

2x Product A AUC 0.614 3.83 0.0707

5x Product A AUC 0.904 6.67 0.155

ALT≥G2
%

TBL≥G2
%

ALT≥G2 
& 

TBL≥G
2
%

0.469 2.39 0.0677

0.607 3.73 0.124

1.10 10.1 0.446

----- Ordinal Model ----- ----- Binary Model -----

Compared to a univariate logistic model for the joint outcome (ALT & TBL
≥ G2), a bivariate logistic model not only is more likely to converge and
capture the important predictors, but also provides less biased and more
efficient (i.e. smaller RMSEs, data not shown) model predictions.

When the proportional odds assumption is reasonable, a bivariate ordinal
model not only is more likely to converge (especially in cases where the
binary events are rare), but also provides less biased model predictions.

Observed ALT and TBL elevations in Product A global studies

2 subjects had 
ALT & TBL ≥ G2

Exposure-safety analyses were originally performed using univariate
logistic regression models individually on ALT or TBL ≥ G2 against
Product A exposure. Predictions were then made for ALT and TBL rates
under 2- and 5-fold Product A exposures.

Bivariate ordinal and binary models were used to fit the same data and
predict ALT and TBL ≥ G2 under different Product A exposure
assumptions. Predictions for individual outcomes from the bivariate
models were in-line with those from the univariate binary model. But the
bivariate models were able to provide predictions of simultaneous ≥ G2
ALT and TBL elevations. In addition, where events are rare (e.g. joint
outcome rate < 1 % as seen in the simulation studies) , the ordinal model
was able to converge and provide predictions (assuming proportional-
odds is reasonable), while the binary model would not converge.


