

Introduction

- Meta-analysis is a commonly used statistical tec combining results from multiple clinical trials.
- Meta-analysis with extremely rare events causes data sparsity, leading to zero-event trials that ma extremely skewed distributions of event frequence insufficient statistical power to estimate the effect heterogeneity across studies.
- Bayesian meta-analysis models have the advant handling the sparsity due to their flexibility and the employing a wide range of prior specifications.
- We compare the performance of 8 Bayesian me methods and explore different prior distributions

Bayesian meta-analysis model

Likelihood

 $y_{ik} \sim Bin(n_{ik}, p_{ik}),$

- i = 1, ..., I: study
- k = 1 for the control group; k = 2 for the treated \triangleright y_{ik} , n_{ik} , p_{ik} : the number of events, the number of the probability of having an event in group k on

Logistic regression model

We consider models under two assumptions:

- 1) constant treatment effect (CTE)
- (2) heterogeneous treatment effect (HTE)

CTE-Logit: $logit(p_{ik}) = \mu_i + dl(k = 2)$ **HTE-Logit**: $logit(p_{ik}) = \mu_i + \delta_i I(k = 2)$

- \blacktriangleright $\mu_i \sim N(0, 10^2)$: the study-specific baseline effect
- $\sim d \sim N(0, 10^2)$ or $N(0, 2.82^2)$: LOR between two g
- $\blacktriangleright \delta_i \sim N(d, \tau^2)$: the study-specified LOR
- > 4 prior distributions for τ , between-study hetero Uniform(0, 2), HalfCauchy(0, 0.5), Pareto(0.5, 0.5)and HalfNormal(0, 16)

Arm-based model

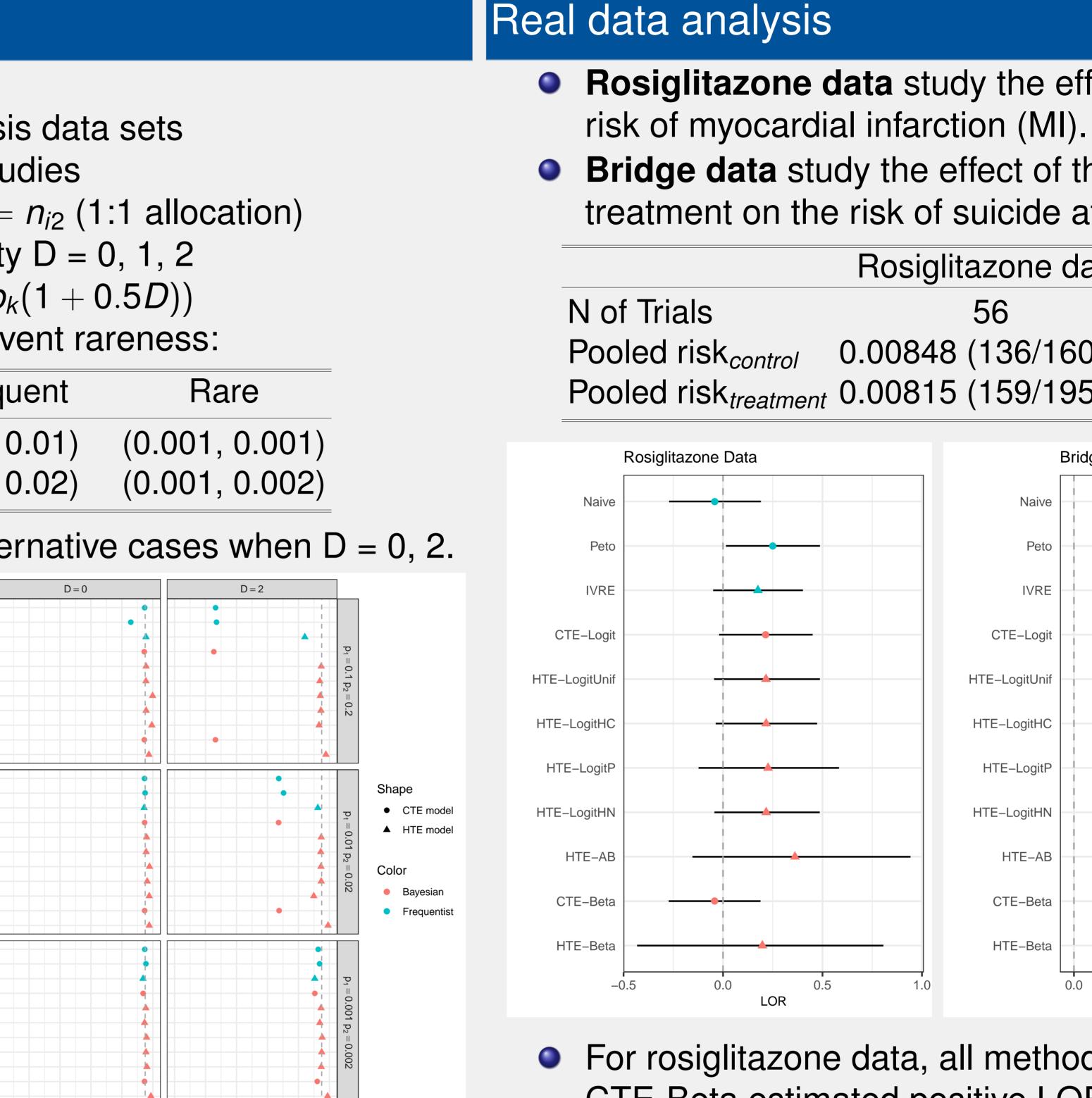
 $logit(p_{ik}) = \theta_k + \eta_{ik},$

- \triangleright $\theta_k \sim N(0, 10^2)$: the k^{th} treatment effect (log odds)
- $\rightarrow \eta_{ik}$: random effects allowing heterogeneity of the
- $\blacktriangleright (\eta_{i1}, \eta_{i2})^T \sim BVN((0, 0)^T, \Sigma), \Sigma^{-1} \sim Wishart(\Omega, 2)$
- Note The choice of Wishart distribution is important and on data. We chose the one that provided a reason distribution and the smallest WAIC among our car

Beta-hyperprior model

- \triangleright CTE-Beta assumes that p_{ik} is consistent across studies. $p_k \sim Beta(1,1)$
- **HTE-Beta** assumes that p_{ik} varies across studies. $p_{ik} \sim Beta(U_k V_k, (1 - U_k) V_k)$
 - $U_k = \frac{a_k}{a_k + b_k} \sim Beta(1, 1)$: the mean of p_{ik} s
 - $V_k = a_k + b_k \sim Gamma^{-1}(1, 0.01)$
 - $\frac{U_k(1-U_k)}{V_{k+1}}$: study heterogeneity in the probability scale

A comparison of Bayesian meta-analysis methods for rare adverse events Jinyi Zhou¹*, Gary Rosner², Chenguang Wang², and Hwanhee Hong¹


¹ Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina, USA ² The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, Maryland, USA

* Degree Program: Master of Biostatistics; email: jz309@duke.edu

* Degree Program: Master of Biostatistics		
	Simulation study	
echnique for es an issue of ay cause ncies and ect	 Settings 1000 simulated metal Each dataset include n_{i1}~Uniform(50, 100) Between-study heter p_{ik}~Uniform(p_k(1 - 0)) Three different degree 	es 30 stud 0), $n_{i1} = r$ rogeneity 0.5 <i>D</i>), $p_k($
ntage of the ability of	(p_1, p_2) Common Null (0.1, 0.1) Alternative (0.1, 0.2)	Infreque (0.01, 0. (0.01, 0.
eta-analysis s.	Here, we display the results of $D=0$	
	Naive - Peto - IVRE - CTE-Logit -	Naive - Peto - IVRE - CTE-Logit -
ed group of subjects, 1 study <i>i</i>	HTE-LogitUnit HTE-LogitHO HTE-LogitHO HTE-LogitHO HTE-LogitHO HTE-Beta HTE-Beta HTE-LogitHO HTE-LOGITHO HTE-LOGITH	HTE-LogitUnif HTE-LogitHC HTE-LogitHN HTE-AB CTE-Beta HTE-Beta Naive Peto IVRE CTE-Logit HTE-LogitUnif HTE-LogitHN HTE-LogitHN HTE-Beta HTE-Beta HTE-Beta HTE-LogitHC HTE-LogitHN HTE-LogitHN HTE-LogitHC HTE-LogitHC 0.0 0.2
groups	(a) Bias	(
ogeneity: 0.006),	 Results Bias gets larger as the few methods (Naive, models) provided power common or infrequer 	Peto, IVF or covera
s of treatment k) be log odds 2), $\Omega = \begin{bmatrix} 0 & 6 \\ 6 & 0 \end{bmatrix}$ d should depend onable prior andidates.	 CTE-Beta and HTE- D = 0 and 2, respect For the rare outcome models provided unb logistic regression-st somewhat biased res When D = 0, all meth coverage probability 	Beta gave ively. e case, Pe biased est yle model sults. hods are a

common outcome case.

true event risk gets smaller.

(b) Coverage Probability

isk of event gets smaller. A RE, and CTE Bayesian age when the outcome is idely heterogeneous (D=2). ve the smallest WAIC when

0.2 0.4 0.6

Peto, HTE-AB, and CTE-Beta stimates, while Bayesian els and HTE-Beta provided

able to achieve the nominal coverage probability (CP) 0.95, except Peto under the

When D = 2, all Bayesian HTE models are able to achieve the nominal CP across all cases. On the contrary, all CTE models (both Bayesian and frequentist) yielded CP lower than 0.95, but these CPs become closer to 0.95 as the

For rosiglitazone data, all methods except Naive and CTE-Beta estimated positive LORs. Only Peto provided a 95% confidence interval excluding 0.

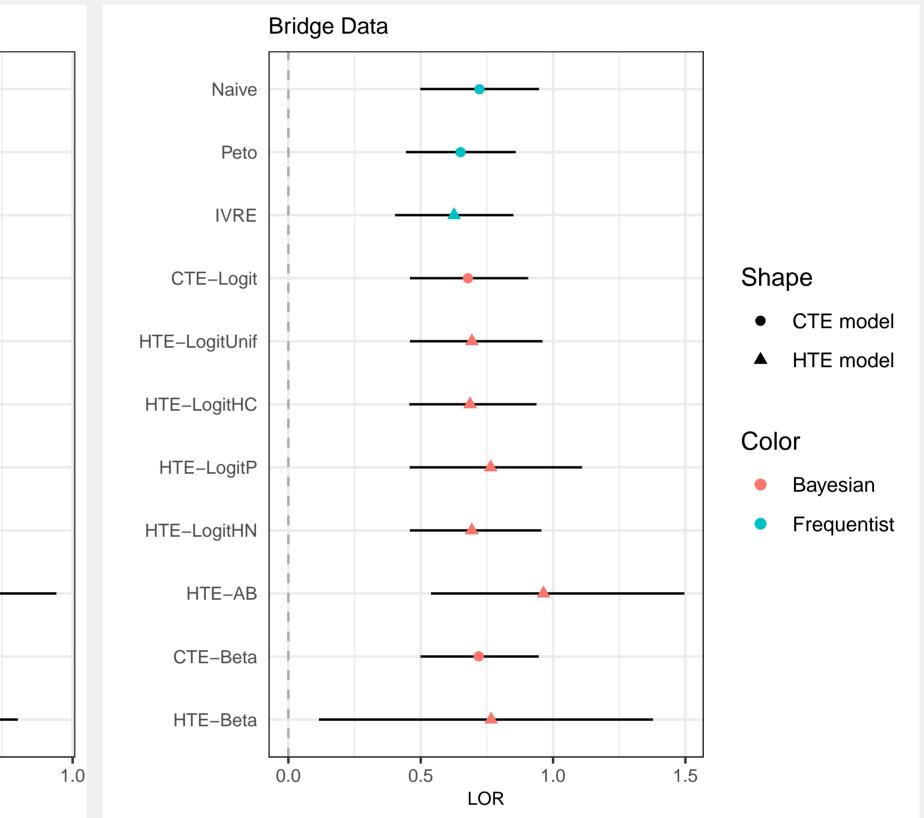
Conclusion

Overall, Bayesian HTE-AB with a properly specified Wishart prior and HTE-Beta perform well and provide good model fits. Bayesian CTE also performs well with rare events under valid CTE model assumptions. We recommend to fit various Bayesian meta-analysis models and compare the results and model fits.

Future work

To improve the HTE-Beta method, we are implementing a mixture prior using a Dirichlet Process that allows us to employ a weighted Beta prior (between non-informative and informative priors) for U_k .

References


Hong, H., Wang, C., Rosner G. "Meta-Analysis of Rare Adverse Events" in Randomized Clinical Trials: Bayesian and Frequentist Methods" 2019 *Clinical Trials*, Forthcoming.

Duke University School of Medicine

Rosiglitazone data study the effect of rosiglitazone on the

Bridge data study the effect of the pediatric antidepressant treatment on the risk of suicide attempt.

	
Rosiglitazone data	Bridge data
56	27
00848 (136/16022)	0.00756 (112/14811)
00815 (159/19509)	0.01544 (256/16578)

For Bridge data, all methods provided positive LOR estimates with 95% credible/confident intervals excluding 0.

• For both data, **HTE-AB** gave the smallest WAIC. **HTE-Beta** and **CTE-Logit** gave the second smallest WAICs for Rosiglitazone and Bridge data examples, respectively.