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Introduction
Meta-analysis is a commonly used statistical technique for
combining results from multiple clinical trials.
Meta-analysis with extremely rare events causes an issue of
data sparsity, leading to zero-event trials that may cause
extremely skewed distributions of event frequencies and
insufficient statistical power to estimate the effect
heterogeneity across studies.
Bayesian meta-analysis models have the advantage of
handling the sparsity due to their flexibility and the ability of
employing a wide range of prior specifications.
We compare the performance of 8 Bayesian meta-analysis
methods and explore different prior distributions.

Bayesian meta-analysis model

Likelihood
yik∼Bin(nik ,pik),

I i = 1, . . . , I: study
I k = 1 for the control group; k = 2 for the treated group
I yik , nik , pik : the number of events, the number of subjects,

the probability of having an event in group k on study i
Logistic regression model
We consider models under two assumptions:
(1) constant treatment effect (CTE)
(2) heterogeneous treatment effect (HTE)

CTE-Logit: logit(pik) = µi + dI(k = 2)
HTE-Logit: logit(pik) = µi + δiI(k = 2),

I µi∼N(0,102): the study-specific baseline effect
I d∼N(0,102) or N(0,2.822): LOR between two groups
I δi∼N(d , τ2): the study-specified LOR
I 4 prior distributions for τ , between-study heterogeneity:

Uniform(0,2),HalfCauchy(0,0.5),Pareto(0.5,0.006),
and HalfNormal(0,16)

Arm-based model
logit(pik) = θk + ηik ,

I θk∼N(0,102): the k th treatment effect (log odds of treatment k)
I ηik : random effects allowing heterogeneity of the log odds
I (ηi1, ηi2)T∼ BVN((0,0)T ,Σ), Σ−1 ∼ Wishart(Ω,2), Ω = [ 0 6

6 0 ]
Note The choice of Wishart distribution is important and should depend

on data. We chose the one that provided a reasonable prior
distribution and the smallest WAIC among our candidates.

Beta-hyperprior model
I CTE-Beta assumes that pik is consistent across studies.

pk∼Beta(1,1)

I HTE-Beta assumes that pik varies across studies.
pik∼Beta(UkVk , (1 − Uk)Vk)

Uk = ak
ak+bk

∼ Beta(1,1): the mean of piks
Vk = ak + bk ∼ Gamma−1(1,0.01)
Uk(1−Uk)

Vk+1 : study heterogeneity in the probability scale

Simulation study
Settings
I 1000 simulated meta-analysis data sets
I Each dataset includes 30 studies
I ni1∼Uniform(50,1000), ni1 = ni2 (1:1 allocation)
I Between-study heterogeneity D = 0, 1, 2
I pik∼Uniform(pk(1 − 0.5D),pk(1 + 0.5D))
I Three different degrees of event rareness:
(p1,p2) Common Infrequent Rare

Null (0.1, 0.1) (0.01, 0.01) (0.001, 0.001)
Alternative (0.1, 0.2) (0.01, 0.02) (0.001, 0.002)

Here, we display the results of the alternative cases when D = 0, 2.
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(a) Bias
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(b) Coverage Probability

Results
I Bias gets larger as the true risk of event gets smaller. A

few methods (Naive, Peto, IVRE, and CTE Bayesian
models) provided poor coverage when the outcome is
common or infrequent, but widely heterogeneous (D=2).

I CTE-Beta and HTE-Beta gave the smallest WAIC when
D = 0 and 2, respectively.

I For the rare outcome case, Peto, HTE-AB, and CTE-Beta
models provided unbiased estimates, while Bayesian
logistic regression-style models and HTE-Beta provided
somewhat biased results.

I When D = 0, all methods are able to achieve the nominal
coverage probability (CP) 0.95, except Peto under the
common outcome case.

I When D = 2, all Bayesian HTE models are able to achieve
the nominal CP across all cases. On the contrary, all CTE
models (both Bayesian and frequentist) yielded CP lower
than 0.95, but these CPs become closer to 0.95 as the
true event risk gets smaller.

Real data analysis
Rosiglitazone data study the effect of rosiglitazone on the
risk of myocardial infarction (MI).
Bridge data study the effect of the pediatric antidepressant
treatment on the risk of suicide attempt.

Rosiglitazone data Bridge data
N of Trials 56 27
Pooled riskcontrol 0.00848 (136/16022) 0.00756 (112/14811)
Pooled risktreatment 0.00815 (159/19509) 0.01544 (256/16578)
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For rosiglitazone data, all methods except Naive and
CTE-Beta estimated positive LORs. Only Peto provided a
95% confidence interval excluding 0.
For Bridge data, all methods provided positive LOR estimates
with 95% credible/confident intervals excluding 0.
For both data, HTE-AB gave the smallest WAIC. HTE-Beta
and CTE-Logit gave the second smallest WAICs for
Rosiglitazone and Bridge data examples, respectively.

Conclusion
Overall, Bayesian HTE-AB with a properly specified Wishart prior
and HTE-Beta perform well and provide good model fits. Bayesian
CTE also performs well with rare events under valid CTE model
assumptions. We recommend to fit various Bayesian meta-analysis
models and compare the results and model fits.

Future work
To improve the HTE-Beta method, we are implementing a mixture
prior using a Dirichlet Process that allows us to employ a weighted
Beta prior (between non-informative and informative priors) for Uk.
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