Robust Blocked Response-Adaptive Randomization (RAR) Designs

<u>A Motivating Trial</u>

Design of BATTLE-1 Trial

- 1st interim look: at least one patient in each treatment and biomarker groups
- ? All subsequent interim looks: patient by patient

Conclusion

- "More smokers enrolled in the latter part of the study compared to the beginning of the study".
- Time trends are nearly universally ignored among RAR proponents.

Biomarker-integrated Approach Targeted Therapy for Lung Car Elimination (BATTLE - 1)

- an umbrella design;
- 4 treatments, 5 biomarkers;
- primary end point, 8-week disease control rate;
- treat more patients in promising groups based on biomarker profile;
- suspend ineffective groups early

Time-trends and How it affect RAR?

• Thall et al. (2015) investigated type-I error under a linear time-trend induced in the traditional RAR design and showed that the type-I error is significantly above the nominal level.

Traditional RAR

- fixed allocation for burn-in period (first k patients)
- alter randomization ratio per patient

Blocked RAR Designs

- patients are assigned in blocks and the randomization ratio is recomputed for blocks
- the final analysis is stratified by blocks

Thevaa Chandereng^{1*}, Rick Chappell^{1,2} ¹Dept. of Statistics, University of Wisconsin, ²Dept. of Biostatistics & Medical Informatics, University of Wisconsin *1300 University Ave, Madison, WI 53706 Email: chandereng@wisc.edu

ches	0
ance	r

Research Objectives			<u>Simulation Setup</u>	An Illustration: Operating Characteristics						
To provide a flexible and practical approach for RAR			 N = 200 subjects K = 1, 200 (non-stratified analysis) K = 2, 4, 5, 10, 20, 100 (stratified analysis) ? 10,000 independent simulations p_A is set to 0.25, p_B is set to 0.25 (null case), 0.45 (alternative case) Burn-in period of 40 patients (fixed 	p_B	No. of Block(s)	Power	Bias	E(N)	π_{20}	$N_B - N_A$
designs:				0.25	1	0.06	0.00	176.73	0.06	0(-28, 26)
 Provide a design that control the type I error under time-trends Compare the operating characteristics for different number of blocks 					2	0.06	0.00	179.09	0.15	0.29(-44, 44)
					4	0.06	0.00	184.24	0.23	0.06(-60, 58)
					5	0.06	0.00	186.01	0.25	-0.3(-64, 62)
 Bayesian and frequentist approaches Reduce the non-trivial risk of assigning more subjects to the inferior treatment 				10	0.07	0.00	195.50	0.29	-0.83(-72, 70)	
				20	0.07	0.01	200.00	0.31	-0.54(-76, 74)	
				100	0.01	0.00	200.00	0.33	-0.87 (-80, 78)	
				200	0.16	0.00	174.68	0.25	0.12(-60, 60)	
Mathada		0.45		1	0.91	0.07	97.05	0.02	0.02(-20, 21)	
IVIELIIUUS					2	0.90	0.07	112.34	0.01	11.07(-14, 56)
Approach	Frequentist	Bayesian	randomization)		4	0.88	0.06	142.83	0.00	32.7(-9,82)
Algorithm	Modified RPW	BAR(n/2N)	 Allocation probability bounded botween 0.2 and 		5	0.88	0.06	151.83	0.00	39.78(-8,88)
	rule	.	0.8		10	0.87	0.03	183.78	0.00	58.94 (-4, 100)
Non-stratified analysis	Chi-square test	Beta-binomial conjugate prior	 To examine the effects of 		20	0.86	0.01	200.00	0.00	$69.6\ (18,\ 106)$
Stratified analy-	CMH test	Rinary regression	time-trends, we increased both p_A and p_B linearly		100	0.33	-0.14	200.00	0.00	$71.83\ (16,\ 108)$
sis	Civin test	binary regression			200	0.94	0.07	94.87	0.00	$16.04 \ (-8, \ 64)$
Early stopping rules	Alpha-spending	success: $P_{B>A}(data) > .99$, failure:	from their initial values to a final value of 0.25 larger	RAR using Bayesian approach with early stopping criteria and with 0.25 drift. p_A is set to 0.25 for all cases. E(N) represents the mean sample size. Bias = $\delta = \delta$, $\pi_{ee} = P(NA = NR > 20)$. No and Na denotes the number of patients assigned						

 $P_{B>A}(data) < .01$

Yates correction

Not applied Modified RPW rule

The probability of randomizing subjects to treatment A in block j, $\pi_{i,A}$ is defined as

$$\pi_{j,A} = \frac{\frac{y_{A,j-1}+1}{N_{A,j-1}+2}}{\frac{y_{A,j-1}+1}{N_{A,j-1}+2} + \frac{y_{B,j-1}+1}{N_{B,j-1}+2}},$$

where $y_{A,i-1}$ and $N_{A,i-1}$ are the numbers of events and subjects in treatment A and $y_{B,j-1}$ and $N_{B,j-1}$ are the numbers of events and subjects in treatment B after block j – 1.

BAR(n/2N)

$$\pi_{j,A} = \frac{(p_{A>B,j-1}(data))^{n/2N}}{(p_{A>B,j-1}(data))^{n/2N} + (p_{B>A,j-1}(data))^{n/2N}}$$

where $p_{A>B,i-1}$ (data) is the posterior probability that treatment A has a higher success rate than treatment B, $p_{A>B,j-1}(data)) = 1 - p_{B>A,j-1}(data))$ after the i – 1st block, n is the number of accrued patients and N is the maximum sample size.

o-o. $\pi_{20} = P(NA-NB > 20)$, N_A and N_B denotes the number of patients assigned to treatment A and B. The mean (2.5%, 97.5%) of $N_B - N_A$ is reported in the last column. 10,000 simulations were done for each case.

Discussion and Summary

- Blocks with fewer patients can reduce the power of the trial because if patients are not randomized to both treatments in a block, the block becomes uninformative.
- Large number of blocks should be clearly avoided for both ethical reason and poor design.
- Small number of blocks (K = 2, 4 and 5) has a good tradeoff between efficiency and ethically treating patients to the best known superior treatment.
- RAR proponents cannot ignore time-trends.
- Time-trend can significantly impact the type-I error rate.
- **?** R package blockRAR
- Choice of algorithm: low probability of assigning more subjects to the inferior arm and moderate scheme to alter randomization ratio
- RAR carries a non-trivial risk of creating a large sample size imbalance in favor of the inferior treatment.