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Introduction

Continuous-time hidden Markov models are an attractive approach
for disease modeling because they are explainable and capable of
handling both irregularly sampled, skewed and sparse data arising
from real-world medical practice. Most applications in this context
consider time-homogeneous models due to their relative computa-
tional simplicity. However, the time homogeneous assumption is
too strong to accurately model the natural history of many diseases
such as cancer. Moreover, the population at risk is not homoge-
neous either, since disease exposure and susceptibility can vary
considerably. We model the heterogeneity of disease progression
and regression using piece-wise constant intensity functions model
the heterogeneity of risk in the population using a latent mixture
structure. Different submodels under the mixture structure share
the same latent states due to both clinical interpretation and model
parsimony. We also consider flexible observational models dealing
with model over-dispersion in real data. An efficient, scalable EM
algorithm for inference is proposed with the theoretical guaran-
teed convergence property. We demonstrate our method’s supe-
rior performance compared to other state-of-the-art methods using
synthetic data and a real-world cervical cancer screening dataset
from the Cancer Registry of Norway.

Objective

• Provide a better model predictive performance on cancer
screening data.

• Provide a risk stratification approach.

Contributions

• Develop a latent mixture model to explain the frailty of the
few women developing high-grade lesions and invasive cancer
when exposed to the human papilloma virus.

• Promote parsimony in the mixture structure with great ex-
planatory predictive power and solve the imbalance learning
issue.

• Relieve the overdispersion issue in the observation model.

Model Notation

• Observations: O = {On}.

• Number of screening tests: E = {Entk}.

• Screening test results: G = {Gntkl}

• Covariates: θ = {θn}.

• Model parameters: ψ = {ψz}.

• Continuous-time hidden Markov models: {Mz}

• Model indexes: z = {zn}.

Model

Hierarchical Model:

On|ψ, zn ∼ Mzn(ψzn,θn) ,

zn|p ∼ Cat(p) .

Individual Models (Continuous-time hidden Markov model) [3]:
Mlow risk:

Normal Low grade

Death

Mhigh risk:

Normal Low grade

Death

High grade Cancer

Observation Model (omitting the subscripts n and t):

Ek|s,η ∼ Poisson(ηsk) ,

Gk|Ek, s, π̃ ∼ Multinomial(Ek, π̃sk) ,

π̃sk|α̃ ∼ Dir(α̃sk) .

Inference

• Given previous estimates ψ(t−1), compute the conditional posterior
distribution of zn:

p(zn|On,ψ(t−1)) ∝ π(zn)p(On|zn,ψ(t−1)) ∼ Cat((p̃n1, . . . , p̃nZ)′) ,

where p̃nk =
pkqnk∑Z
z=1 pzqnz

and qns = p(On|zn = s,ψ
(t−1)
s ).

– p(On|z,ψz) is accessible through the forward-filter backward-
sample algorithm (FFBS), which is a sequential Monte Carlo ap-
proach first proposed in [2].

• Update the optimal state sequence Sn given corresponding observa-
tions On and model indicator z using the Viterbi algorithm [1] and
we denote it as:

S
(t)
nz = Viterbi(On,ψ

t−1
z ) .

• Maximize the expected marginal complete log-likelihood (EMCLL)
with respect to ψ by

ψ(t) = argmax
ψ

N∑
n=1

Ezn,Sn(`(ψ|On, zn,Sn)|On,ψ(t−1)) .

– Instead of using the conditional posterior distribution for the ex-
pectation, we replace it by an approximate conditional posterior
distribution

q(zn,Sn|On, ψ(t−1)) = p(zn|On, ψ(t−1))1
S

(t)
nzn

(Sn) .

• Decompose parameters ψ into two parts, transition parameters ψtran

and emission parameters ψemis. Denote ψtran
z as transition parame-

ters in the zth model. We separately estimate ψtran
z and ψemis by

ψ̂
tran(t)
z = arg max

N∑
n=1

p(zn = z|On,ψ(t−1)) log(S
(t)
nz |z,ψtran

z ) ,

ψ̂
emis(t)
z = arg max

N∑
n=1

p(zn = z|On,ψ(t−1)) log(On|S
(t)
nz ,ψ

emis
z ) .

Simulation Study

Simulation Setting
We consider that two states, S1 and S2, two transition structures, A and
B and a binary observation model.

• Structure A: CTIHMM with transition rates, r1 = r2 = 0.1 in the
interval (0, 5] while r1 = r2 = 1 in the interval (5, 10].

• Structure B: CTIHMM with transition rates, r1 = r2 = 1 in the
interval (0, 5] while r1 = r2 = 0.1 in the interval (5, 10].

• The observation model is developed by simple categorical distributions
such that p(O|S1) ∼ Ber(p1 = 0.95) and p(O|S2) ∼ Ber(p2 = 0.05).

• We sample imbalanced time series via sampling 200 time series from
structure A and 300 time series from structure B.

• All time series are assumed to start at state 1 and have 50 observations
randomly located on the time interval (0, 10).

Inference Results
We show both bootstrap mean and bootstrap standard error of model
parameters.

•
Structure r̂1(t < 5) r̂2(t < 5) r̂1(t > 5) r̂2(t > 5)

A 0.07(0.01) 0.06(0.03) 1.08(0.12) 1.09(0.13)
B 0.85(0.11) 0.98(0.12) 0.12(0.02 ) 0.07(0.02)

• p̂1 = 0.953(0.003) and p̂2 = 0.041(0.004)

Model Comparison

• We take 1000 balanced time series with 50 observations on each for
testing, in which 500 of them are generated from structure A and the
other 500 are generated from structure B for testing.

• We run different models to predict the last observations.

Method ACC AUC F1 AP P R
LSTM (small) 0.802 0.854 0.805 0.740 0.794 0.816
LSTM (large) 0.783 0.856 0.786 0.720 0.776 0.796

stacked LSTM (small) 0.820 0.886 0.819 0.765 0.826 0.812
stacked LSTM (large) 0.766 0.858 0.767 0.704 0.765 0.768

GRU (small) 0.814 0.865 0.812 0.759 0.822 0.802
GRU (large) 0.802 0.867 0.803 0.742 0.801 0.804
HCTIHMM 0.859 0.910 0.858 0.809 0.862 0.853

• small: layer size 16; large: layer size 64.

• ACC: Accuracy; AUC: Area Under The Curve; F1: F1 score; AP:
Average Precision; P: Precision; R: Recall.

Experimental Study using
Cervical Cancer Screening Data

Cervical Cancer Screening Data and Model setting

• The dataset contains 1.7 million patients’ screening exams be-
tween 1992 and 2015 and all individual are (right) censored at
December 31, 2015.

• Data includes Cytology (4 levels), histology (4 levels) and HPV
(2 levels) screening results.

• We consider normal, low-risk, high-risk and cancer states and
consider the age partition as A as [16, 23), [23, 30), [30, 60) and
[60,∞). We note that the lower age limit in our data is 16.

Model Inference and Comparison
We randomly select 240, 000 records for inference and set the prior of
model index as 0.2.
Some results:

Kaplan Curves from the hierarchical model and non-hierarchical
model:

• Define failure as the first observation of a high-risk or cancer
testresult directly following an initial normal or low-grade test
result.

• Empirical Kaplan-Meier curve (black) and simulated Kaplan-
Meiercurves, which are summarized using the 95% credible inter-
val (dashedlines) and the median (solid lines), from the CTIHMM
(blue) andHIHMM (red).

Risk Stratification
We random select 20, 000 patients for risk stratification. We set an
age threshold t0 = 35 and take records before the threshold for risk
stratification and take records after the threshold for model validation.
Specifically, we plot empirical Kaplan Meier curve in different groups
clustered by their risk level.

• To guarantee enough data for risk stratification, we require that
woman should have 10 years under observation before the thresh-
old t0. In other word, woman’s age at the first visit should less
than t0 − 10.

• To guarantee enough data for Kaplan Meier plotting, we require
that woman have at least one visit after the threshold except for
the censor visit.
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