

A Motivating Example

How can we perform an analysis on the data set below given we have 50% double-zero studies?

	Off-pump		On-pump	
Study	Strokes	Total Patients	Strokes	Total Patients
Raja 2003	3	150	4	150
PRAGUE-4 2004	0	208	2	192
egare 2004	2	150	0	150
ingaas 2004	0	60	2	60
OCRI 2005	0	81	1	86
Jiranjan 2006	1	40	1	40
Iotallebzadeh 2006	1	108	5	104
PROMISS 2010	0	73	0	74
Matata 2000	0	10	0	10
enttila 2001	0	11	0	11
Caputo 2002	0	20	0	20
amvar 2002	0	30	0	30
asz 2005	0	10	0	20
scione 2005	0	10	0	10
lichaux 2006	0	25	0	25
scione 2006	0	20	0	20
atoulis 2006	0	50	0	50
zkara 2007	0	22	Õ	22
asmussen 2007	0	18	0	17
Iandak 2008	0	20	0	20
ural 1995	0	25	0	25
ulielmos 1999	0	20	0	20
zerny 2000	0	15	0	15
lochamba 2000	0	29	0	29
Vandschneider 2000	0	2 <i>5</i> 52	0	23 67
zerny 2001	0	40	0	40
edin 2003	0	33	0	37
	0	33 27	0	27
elissaris 2003	0		0	
arolari 2003	0	11	0	14
asz 2004	0	10	0	10
ynnergren 2004	0	26	0	26
lacher 2005	0	13	0	15
achwalik 2006	0	21	0	21
Ialik 2006	0	25	0	25
avalca 2006	0	25	0	25
Enenc 2006	0	30	0	12
Rainio 2007	0	10	0	10
Kunes 2007	0	17	0	17
arolari 2007	0	14	0	15
Formica 2009	0	30	0	30
Iodine 2010	0	35	0	36

Figure 1: Møller et al. (2012)'s 60 independent studies comparing the offpump and onpump methods used in coronary artery bypass grafting with regard to the occurrence of postoperative strokes

Background

Given K studies, we assume that in the *i*-th study, the number of rare events Y_{ic} (control), and Y_{it} (treatment), follow binomial distributions $Y_{ic} \sim \text{Binomial}(n_{ic}, p_{ic}), Y_{it} \sim \text{Binomial}(n_{it}, p_{it}),$ (1) $i=1,\cdots,K.$

The goal is to compare the probability of control group p_{ic} with the probability of treatment group p_{it} to see if there is any difference. To gauge the difference, we consider odds ratios, $\theta_i = \frac{p_{it}}{1-p_{it}} / \frac{p_{ic}}{1-p_{ic}}$. Equivalently, we have a log odds ratio $\delta_i = \log(\theta_i) = \log(\frac{p_{it}}{1-p_{it}}) - \log(\frac{p_{ic}}{1-p_{ic}}) =$ $logit(p_{it}) - logit(p_{ic}) = \mu_{it} - \mu_{ic}$. Thus, we rewrite the binomial model as follows:

 $logit(p_{ic}) = \mu_{ic}, \ logit(p_{it}) = \mu_{ic} + \delta_i, \ i = 1, \cdots, K.$

Something out of Nothing?

The Influence of 0-0 Studies in Drug Safety Analysis Zhaohu(Jonathan) Fan Yuejie Chen Nanhua Zhang Dungang Liu

We assume that the baseline effects μ_{ic} are random-effects. Specifically, the baseline effects vary, and are drawn from a normal distribution $N(a, b^2)$. The treatment effects are assumed to be fixed, namely, the treatment effects are identical across all the studies $\delta_i = \delta$. It is referred to as fixed-effects binomial model. Hence, we reformulate the fixed-effects binomial model as follows:

> $logit(p_{ic}) = \mu_{ic}, logit(p_{it})$ $\mu_{ic} \sim N(a, b^2), \delta \sim 1$ $a \sim N[-, -], b^2 \sim IG[-, -],$

effects binomial model, the variable of interest is δ in equation (3).

Empirical Study

The value of p_{max} controls the upper bound of baseline probabilities p_{ic} in Table 1. This means that 99.7% of the baseline probability is contained within the p_{max} . Therefore, each such way ($p_{max}=1\%,0.5\%$ and 0.1%) is in a rare-event (sparse) setting.

Table 1: Summary statistics of baseline probabilities p_{ic}

p_{max} Mean Sta	andard Deviatio	on 95% Quantile	99% Quantile
1.00% 0.51%	0.12%	0.73%	0.86%
0.50% 0.26%	0.06%	0.37%	0.43%
0.10% 0.05%	0.01%	0.07%	0.09%

Setting: unbalanced sample size, $n_{ic} > n_{it}$ **Table 2:** Power for rejecting the table 1 and the table 1 and the table 1 and the table 1 and table 1

		, .			U		
	OR	Type I error	1.2	1.4	1.6	1.8	2.0
				$p_{max} = 0.5\%$	/ 0		
are	Partial analysis	10.10%	4.70%	15.20%	43.80%	73.90%	90.90%
	Full analysis	4.80%	9.80%	33.50%	66.20%	88.20%	97.20%
(1)	Average number of 0-0 studies	104	100	97	93	90	86
(1)	% of 0-0 studies	58%	56%	54%	52%	50%	48%
		$p_{max}=1\%$					
	Partial analysis	11.30%	10.30%	46.90%	86.40%	97.80%	99.99%
he	Full analysis	6.00%	21.90%	67.60 %	95.00%	99.60%	100.00%
	Average number of 0-0 studies	65	61	57	54	50	48
То	% of 0-0 studies	36%	34%	32%	30%	28%	27%
'a-	OR	Type I e	rror	2.0	3.0	Ĺ	ł.0
=		<i>p_{max}=0.1%</i>					
as	Partial analysis	9.20%	/ 0	10.40%	53.30%	92.	90%
20	Full analysis	5.70%	/ 0	20.90%	72.60%	97.	00%
	Average number of 0-0 studies	160		152	145	1	39
(2)	% of 0-0 studies	89%		84%	81%	7	7%

$$) = \mu_{ic} + \delta, \ i = 1, \cdots, K,$$
(3)
$$N[-, -],$$
$$\sim IG[-, -].$$

where [-, -] denotes a prior distribution to be specified. In the fixed-

he null	hypothesis	H_0 : OF	l=1
---------	------------	------------	-----

Data Example

The goal of this re-analysis is to assess the following assumption: **a** double-zero studies in meta-analyses contain negligible or none information for statistical inference. If the assumption is right, we should not see not any measurable change in the statistical inference. The initial re-analysis of the meta-data shows evidence effects in Kuss (2015). We re-analyze the meta-data by a fixed-effects binomial model. Hence, we consider the following steps in our analysis. More specifically, we first compare inclusion/exclusion of double-zero studies from our approach. Then we scale up the sample size of double-zero studies by 2, 3, 4 and 5.

This reflects that double-zero studies contains information for inference. To this end, the difference between the Kuss (2015) and our analysis arise from two sources: 1) model itself and 2) the sample size of doublezero studies.

Scale factor w/o

Conclusions

We conclude that double-zero studies contain meaningful information for the statistical inference in meta-analyses. Excluding double-zero studies can mislead inference about odds ratio. Inclusion of double-zero studies can have the following advantages:

1. type I error rate can be moved toward nominal 5% significance level. 2. the testing power can be significantly. increased.

- 3. bias can be decreased.

Contact Information

- fanzh@mail.uc.edu

	•	•			
Estimate		Credible interval			
o 0-0s data	Full data	w/o 0-0s data	Full data		
0.706	0.705	[0.476, 0.947]	[0.469, 0.946]		
0.707	0.757	[0.467, 0.941]	[0.500, 1.010]		
0.707	0.776	[0.476, 0.945]	[0.517, 1.044]		
0.706	0.784	[0.470, 0.939]	[0.524, 1.056]		
0.706	0.789	[0.473, 0.944]	[0.514, 1.053]		

Table 3: Re-analysis of Møller et al. (2012)-I

• Zhaohu(Jonathan) Fan, PhD candidate