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Success Rates for Drug Development
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J.A. DiMasi et al. / Journal of Health Economics 47 (2016) 20–33 

Overall
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Cost for Drug Development

J.A. DiMasi et al. / Journal of Health Economics 47 (2016) 20–33 

Almost $3 Billions!



How can we do better?

Current status

– One drug, one study population, one trial at a time.

– Discrete-phase drug development

Phase I  Phase II  Phase III

– Equal randomization

– Infrequent interim monitoring

– Limited use of all available information

No borrowing from historical data (external, outside of the trial)

No borrowing across subgroups (internal, within the trial) 
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How can we do better? Solutions
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– Limited use of all available 
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Master Protocol: 

Umbrella, basket, 

platform trials

Adaptive randomization

More interim analyses: 

Early stopping for 

toxicity, futility, efficacy 

Bayesian modeling 

with informative priors

Bayesian hierarchical 

model, Cluster 

hierarchical model



Multiple-Arm Platform Design
Biological knowledge advances in a lightning speed

Many new agents and many more combination 

therapies are needed to be evaluated 

Only a small fraction of the drugs are tested in clinical 

trials and the success rate is very low

How can we do better?

– Screen multiple agents simultaneously

– Include a control arm in a randomized study

– Early stopping for futility and/or efficacy via posterior or 

predictive probability 

– Control type I error with multiple testings

– Outcome adaptive randomization

Hobbs, B.P., Chen, N., Lee, J.J. Controlled multi-arm platform design using predictive 

probability (2018) Statistical Methods in Medical Research, 27 (1), pp. 65-78.



Sequential vs. Platform Designs

Each shape depicts a study arm. The horizontal axis represents calendar time. Increases in the direction of the vertical axes 

represent increasing enrollment. The randomized two-arm approach necessitates that the standard of care therapy is 

repeated five times. The platform design enables consolidation of the control arms as well as seamless incorporation of novel 

investigational agents and as they emerge. This reduces redundancy and enhances efficiency.

White Space
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Conceptual Schema of the Platform Design
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Control: Backbone of the Platform
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Example: Design Assumptions

One control arm with p=0.2

Maximum 5 experimental arms with Nmax = 70 /each

Power for detecting a 2-fold increase in the response 

rate for exactly one experimental therapy (p=0.4) 

when the other four experimental therapies are 

equivalent to control (p=0.2) at ≥ 0.8.

Controls the familywise type I error rate at ≤ 0.10

Therapeutic response was evaluated 4 weeks 

following therapy 

Calibrate the design parameters to control type I and 

type II errors

Hobbs, B.P., Chen, N., Lee, J.J. Controlled multi-arm platform design using predictive 

probability (2018) Statistical Methods in Medical Research, 27 (1), pp. 65-78.
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Video 1: Platform Trial with ER: p0=0.2, p2=0.4, p1 = p3 = p4 = 5=0.2
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Operating Characteristics: Multi-arm Platform Design 

When All Experimental Arms Starts at the Same Time

~40% 

Saving 

from 

sequential 

design



Operating Characteristics: 

Comparing Sequential Design, Platform Design, and 

Platform Design with Delayed Entry

22%

15%



Platform Design with Bayesian 

Adaptive Randomization
Start with one control and multiple experimental arms

Apply equal randomization (ER) or adaptive 

randomization (AR)

Calculate the predictive probability or posterior 

probability of each experimental treatment being 

better than the control
– Sufficiently low: Drop the treatment

– Sufficiently high: Graduate the treatment

– Otherwise, continue patient enrollment until reach Nmax

A perpetual, drug screening platform
– Write a protocol with the “backbone” infrastructure

– Add new treatments whenever needed

– Amend the protocol by adding new treatments 



PLBARPOSIM: Platform Design
Max Arms = 6, no control group

– True response rate (): 0.2, 0.3, 0.4, 0.2, 0.3, 0.4

– Reference response rate = 0.3

Number of Active Arms = 3

Nmax =180

– For each arm: nmin = 15, nmax = 30 

Adaptive randomization

𝑃𝑟𝑜𝑏 𝐴𝑅 𝑡𝑜 𝐴𝑟𝑚 𝑖 = 𝑃𝑟𝑜𝑏 𝐴𝑟𝑚 𝑖 𝑖𝑠 𝑡ℎ𝑒 𝑏𝑒𝑠𝑡 / 𝑘=1
𝐾 𝑃𝑟𝑜𝑏(𝐴𝑟𝑚 𝑘 𝑖𝑠 𝑡ℎ𝑒 𝑏𝑒𝑠𝑡), =1

Early stopping rules and final analysis

– Stopping for futility if Prob( < 0.3) > 0.95

– Stopping for efficacy if Prob( > 0.3) > 0.95

– Final efficacy claim if Prob( > 0.3) > 0.9

17



Video 2: Platform Trial with BAR: 1=0.2, 2=0.3, 3=0.4, 4=0.2, 5=0.3, 6=0.4
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PLBARPO: Input for Platform Design
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Bayesian Hierarchical Model (BHM) 

for Basket Designs
Clinical Trials often have subgroups
– Different histology subtypes in breast cancer/lung cancer/sarcoma

– One drug in multiple diseases or multiple drugs in a single disease

– Multi-regional studies

How do we analyze data?
– Treat each subgroup separately

Do not use information efficiently

– Combine all subgroups into one group

Not all groups are the same (iid assumption is too strong and may not 
hold in most cases)

Bayesian hierarchical model can borrowing information 
across subgroups under the exchangeability assumption. 
– More borrowing when subgroups are more like and less borrowing 

when subgroups are more different. (nice!)

– But, what to do if the subgroups are not exchangeable? 

33



An Illustrative Example
Suppose we run a clinical trial with one drug in 5 

subgroups. 

The primary endpoint is binary: Response or No 

Response. We are interested in estimating the 

response rate, p

We want to know whether the drug works or not in 

each subgroup

We observe the following outcome:

– (number of responses/n): 1/15, 2/18, 3/10, 7/15, 8/20

– Estimated response rate: 0.07, 0.11, 0.30, 0.47, 0.40

Can we apply Bayesian hierarchical model to 

borrow information across subgroups?  How?

34



Bayesian Hierarchical Model – BLN (Binomial, Logit, Normal)

There are 𝑚 groups.

Observe the number of successes for each group: 

𝑦𝑖 ~ 𝐵𝑖𝑛(𝑝𝑖 , 𝑛𝑖), 𝑖 = 1,… ,𝑚

Take a logit transformation on 𝑝𝑖 and let  

log(𝑝𝑖/(1-𝑝𝑖)) = 𝜃𝑖
Assume 𝜃𝑖 are exchangeable and 𝜃𝑖~ 𝑁(𝜇, 𝜎

2) = 𝑁(𝜇, 𝜏−1) ,  

where 𝜏 = 𝜎−2 is the precision parameter 

Assume the hyper-prior for 𝜇 ~ 𝑁(𝜇0, 𝜏0
−1) , and

Assume the hyper−prior for 𝜏 ~ 𝐺𝑎𝑚𝑚𝑎 (𝛤𝑎 , 𝛤𝑏)

Compute the posterior distribution for

– 𝑝𝑖 under no borrowing with the prior for 𝑝𝑖~𝐵𝑒𝑡𝑎(𝑎0, 𝑏0)

– 𝑝𝑖 under the BHM model described above

– 𝑝 under the 𝑖. 𝑖. 𝑑. model with  𝑝𝑖 = 𝑝

– 𝑝 under the BHM model with 𝑝 = 1/(1 + exp −𝜇 )
35



Weak Borrowing

Data: 1/15, 2/18, 3/10, 7/15, 8/20

36



Strong Borrowing

Data: 1/15, 2/18, 3/10, 7/15, 8/20
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Moderate Borrowing

Data: 1/15, 2/18, 3/10, 7/15, 8/20

38



Bayesian Classification and Information Sharing 

(BaCIS)
Traditional Bayesian hierarchical models do not have 

subgroup classifications; thus, information is shared 

across all subgroups. 

When the subgroups have very different outcomes, 

placing all subgroups in one pool and borrowing 

information across all subgroups can result in 

substantial bias.

BaCIS allows smart borrowing which borrows across 

“similar” subgroups and does not borrow across 

“dissimilar” ones. BaCIS yields better operating 

characteristics across a wide range of scenarios with 

high statistical power while controlling type I error rate. 

39

Chen, N. and Lee, J. J. Bayesian hierarchical classification and information sharing for clinical trials 

with subgroups and binary outcomes, Biometrical Journal 2019. 



Model Specification
In a Phase II clinical trial with a binary endpoint, assume 
that there are K subgroups.  For each subgroup, there are 
𝑛𝑖 patients with a response rate 𝑝𝑖. The number of 
responses:   

𝑌𝑖~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 𝑛𝑖 , 𝑝𝑖 , 𝑖 = 1,… , 𝐾.

Taking the hypothesis testing framework, subgroups are 
classified into two clusters: drug works or drug does not 
work.

Subsequently, information sharing takes place within 
subgroups in the same cluster, but not across different 
clusters. 

Two-step approach:
– Step 1: Classification (Model 1) 

– Step 2: Information Sharing within each cluster (Model 2)

40



Step 1: Classification (Model 1) 
𝑌𝑖~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 𝑛𝑖 , 𝑝𝑖
𝑙𝑜𝑔𝑖𝑡 𝑝𝑖 = 𝜂𝑖

𝜂𝑖~𝑁𝑜𝑟𝑚𝑎𝑙(𝛾𝐼𝑖 , 𝜏1)

𝐼𝑖 = 1, 𝑖𝑓 𝜃𝑖 < 0
𝐼𝑖 = 2, 𝑖𝑓 𝜃𝑖 ≥ 0

𝜃𝑖~𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜏2 ) i=1,…,K

𝛾𝑗~𝑙𝑜𝑔𝑖𝑡(𝜙𝑗) j=1,…,2

Outcome

Classification with Latent 

Variables

𝜙1: Low Response Rate

𝜙2: High Response Rate

Mimicking Hypothesis Testing Framework:𝐻0: 𝑝𝑖 ≤ 𝜙1 vs 𝐻1: 𝑝𝑖 > 𝜙1

Subgroup i is classified into Cluster 1 if 𝑃𝑟𝑜𝑏 𝜃𝑖 > 0 > 𝜃𝑐 or Cluster 2 

otherwise. 
𝜃𝑐 = 1 −

1

1+exp{−
2Δ𝑟

𝜙2−𝜙1
}
, where Δ𝑟 = (

 𝑌𝑖

 𝑛𝑖
−
𝜙1+𝜙2

2
). 

𝜃𝑐 is determined adaptively. When the overall observed response rate is 

closer to the average of 𝜙1 𝑎𝑛𝑑 𝜙2, Δ𝑟 is closer to 0. Thus 𝜃𝑐 is closer to 0.

When the overall observed response rate is large, Δ𝑟 is large, 𝜃𝑐 becomes

small. Thus, more subgroups are classifed into the high response rate

cluster (Cluster 2) and vice versa. 41



Step 2: Subgroup Borrowing within 

Each Cluster Using Bayesian 

Hierarchical Model (Model 2) 

𝑌𝑖~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 𝑛𝑖 , 𝑝𝑖
𝑙𝑜𝑔𝑖𝑡 𝑝𝑖 = 𝜂𝑖

𝜂𝑖~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇, 𝜏3)

𝜇~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇0, 𝜏4)
𝜏4~Gamma α, β

𝜇0 = 𝑙𝑜𝑔𝑖𝑡(𝜙)

Outcome

Hyper Prior

42

An R-Package: bacistool is available.



Posterior Distributions of Response Rates

Posterior distributions of (a) response rates of all treatment arms, and 

(b) response rates of two clusters with outcomes of (1/15, 2/18, 3/10, 7/15, 8/20). 43
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http://trialdesign.org



46
http://trialdesign.org



Summary (1)
Traditional clinical trial design: One trial, one drug at 

a time, discrete phase, infrequent interim analyses 

approach is inefficient, expensive, and results in 

high failure rate 

Master protocol / platform designs can
– Study multiple drugs and populations in one trial.

– Eliminate white space between trials in separate phases 

– Frequent monitor toxicity and efficacy

– Drop bad arms by early stopping for futility 

– Graduate good arms by early stopping for efficacy

– Add new arms

– Assign more patients to more effective treatments by 

adaptive randomization

– Continuously learn and improve in a perpetual trial
47



Summary (2)
Basket Designs can

– Evaluate the drug effect in multiple subgroups. 

Bayesian hierarchical model can

– Borrow information from all available data (external and 

internal to the trial) to increase efficiency in evaluating 

treatment effect.

– “Smart borrowing” allows borrowing among the “similar” 

subgroups and restrict borrowing across “dissimilar” groups 

by classifying the subgroups to clusters first, then, borrow 

within the clusters. 

Conduct more innovative trials to learn and to adapt 

so we can expedite progress.

48

Let’s rolI up our sleeves, implement 

novel designs, and make a difference!


