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Success Rates for Drug Development

59.52%

Overall
35.52%
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NDA/BLA Sub = New Drug Application/Biologic License Application submission
NDA/BLA App = New Drug Application/Biologic License Application approval

Fig. 1. Estimated phase transition probability and overall clinical approval suc-
cess rates for self-originated new molecular entity (NME) and new therapeutically
significant biologic entity (NBE) investigational compounds first tested in humans
anywhere from 1995 to 2007.

J.A. DiMasi et al. / Journal of Health Economics 47 (2016) 20-33



Cost for Drug Development

Almost $3 Billions!
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Fig. 4. Out-of-pocket and capitalized total cost per approved new drug for new
drugs and for improvements to existing drugs.

J.A. DiMasi et al. / Journal of Health Economics 47 (2016) 20-33




How can we do better?

1 Current status
— One drug, one study population, one trial at a time.

— Discrete-phase drug development
1 Phase | - Phase Il - Phase Il

— Equal randomization
— Infrequent interim monitoring

— Limited use of all available information
1 No borrowing from historical data (external, outside of the trial)
1 No borrowing across subgroups (internal, within the trial)



How can we do better? Solutions

21 Current status

— One d_rLI'g, One_ study population, Master Protocol:
one trial at a time. Umbrella, basket,

— Discrete-phase drug development platform trials
1 Phase | 2 Phase Il - Phase Il

— Equal randomization mmm)  Adaptive randomization

More interim analyses:
Early stopping for
toxicity, futility, efficacy

— Infrequent interim monitoring )

— Limited use of all available

Information | |
1 No borrowing from historical data s Bg%e.s::an modeling
(external, outside of the trial) L) OIS (e
1 No borrowing across subgroups Bayesian hierarchical
(internal, within the trial) — model, Cluster

hierarchical model



Multiple-Arm Platform Design

1 Biological knowledge advances in a lightning speed

1 Many new agents and many more combination
therapies are needed to be evaluated

1 Only a small fraction of the drugs are tested in clinical
trials and the success rate is very low

1 How can we do better?
— Screen multiple agents simultaneously
— Include a control arm in a randomized study

— Early stopping for futility and/or efficacy via posterior or
predictive probability

— Control type | error with multiple testings
— Outcome adaptive randomization

Hobbs, B.P., Chen, N., Lee, J.J. Controlled multi-arm platform design using predictive
probability (2018) Statistical Methods in Medical Research, 27 (1), pp. 65-78.



Sequential vs. Platform Designs

Two-armed Sequential Designs [[] experimental arm
Trial 1 Trial 2 Trial 3 Trial 4 - control arm
Trial 5
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White Space

Each shape depicts a study arm. The horizontal axis represents calendar time. Increases in the direction of the vertical axes
represent increasing enroliment. The randomized two-arm approach necessitates that the standard of care therapy is
repeated five times. The platform design enables consolidation of the control arms as well as seamless incorporation of novel
investigational agents and as they emerge. This reduces redundancy and enhances efficiency.



Sequential vs. Platform Designs

Platform Design
|:| experimental arm

Total Enrollme nt
- control arm

enrollment

calendar time

Each shape depicts a study arm. The horizontal axis represents calendar time. Increases in the direction of the vertical axes
represent increasing enroliment. The randomized two-arm approach necessitates that the standard of care therapy is
repeated five times. The platform design enables consolidation of the control arms as well as seamless incorporation of novel
investigational agents and as they emerge. This reduces redundancy and enhances efficiency.




Conceptual Schema of the Platform Design
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Control: Backbone of the Platform
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Example: Design Assumptions

1 One control arm with p=0.2
1 Maximum 5 experimental arms with N,.., = 70 /each

1 Power

for detecting a 2-fold increase In the response

rate for exactly one experimental therapy (p=0.4)

when t
equiva
1 Contro

ne other four experimental therapies are
ent to control (p=0.2) at = 0.8.

s the familywise type | error rate at < 0.10

1 Therapeutic response was evaluated 4 weeks
following therapy

1 Calibrate the design parameters to control type | and
type Il errors

Hobbs, B.P.
probability

, Chen, N., Lee, J.J. Controlled multi-arm platform design using predictive

(2018) Statistical Methods in Medical Research, 27 (1), pp. 65-78.



Video 1: Platform Trial with ER: p,=0.2, p,=0.4, p, = p;=p,= 6:=0.2

Week = 0, Enrollment =0, Observed =0
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Week = 144, Enrollment = 324, Observed = 316
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Operating Characteristics: Multi-arm Platform Design
When All Experimental Arms Starts at the Same Time

Average no. patients Probability Average
total total

sample  duration
s1ze (1n years)

True
Scenario response —— e selected for  none selected
. S ~

rate | 7€ 1 phase Il for phase III

control j 62.4 125 -
exp. 1-5 ; 48.3 9.7 0.026

0.906 304 2.53

control : 69.3 13.9 -
exp. 14 : 47.9 9.6 0.024
exp. 5 i 69.0 27.6 0.809

control . 69.9 14.0 -
exp. 1-3 : 47.5 9.5 0.022
exp. 4-5 ; 69.1 27.6 0.802
~40%
cgntr?l ; :OE) 1,4'0 0 Saving
Cf\'p. : w(_)j 3.(-) 0.00 from
exp. . 47.5 9.3 0.028 :
exp. - 2 62.9 18.9 0312 sequential

: 69.2 27.7 0.815 design
exp. : 3 69.9 35.0 0.982




Operating Characteristics:
Comparing Sequential Design, Platform Design, and
Platform Design with Delayed Entry

Scenario
Design property Design

Sequential
Proportion of patients two-arm trials
assigned to arm with
success rate
t=0.3 Platform with
delayed entry

[ Platform

Sequential
two-arm trials

Mean trial

[ Platform
response rate

Platform with
delayed entry




Platform Design with Bayesian

Adaptive Randomization
1 Start with one control and multiple experimental arms

1 Apply equal randomization (ER) or adaptive
randomization (AR)

1 Calculate the predictive probability or posterior
probability of each experimental treatment being

better than the control

— Sufficiently low: Drop the treatment

— Sufficiently high: Graduate the treatment

— Otherwise, continue patient enrollment until reach N

1 A perpetual, drug screening platform
— Write a protocol with the “backbone™ infrastructure
— Add new treatments whenever needed
— Amend the protocol by adding new treatments

max



PLBARPOSIM: Platform Design

1 Max Arms = 6, no control group
— True response rate (0): 0.2, 0.3, 0.4,0.2,0.3,0.4
— Reference response rate = 0.3

1 Number of Active Arms = 3

1 N, =180
— For each arm: n;, = 15, n,, = 30

1 Adaptive randomlzatlon
Prob(AR to Arm i) = Prob(Arm i is the best)"/ Y X_, Prob(Arm k is the best)", =1

1 Early stopping rules and final analysis
— Stopping for futility if Prob(6 < 0.3) >0.95
— Stopping for efficacy If Prob(6 > 0.3) > 0.95
— Final efficacy claim if Prob(6 >0.3) > 0.9

17



Video 2: Platform Trial with BAR: 6,=0.2, 6,=0.3, 6,=0.4, 6,=0.2, 6:=0.3, 6,=0.4




Figure 1: Outcome (Number of Patients = 138)
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Figure 2: Randomization Probability
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Figure 3: Accrual Timeline (Number of Patients = 138)
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Figure 4: Futility Early Stopping
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Figure 5: Efficacy Early Stopping
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Figure 6: Probability of Declaring Efficacy
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PLBARPO: Input for Platform Design

Operating Characteristics Input

Input Parameter Input Value
Trial Name (Optional)
With Control Arm FALSE
Control Arm Option FALSE
Maximum Number of Arms 6
Number of Active Arm 3
Equal Prior for All Arms TRUE
Prior distribution for theta:Beta(a,b) a 0.5
Prior distribution for theta:Beta(a,b) b 0.5
True Response Rate 02,03,04,02,03,04
Minimum number of patients per arm before early stopping rule applies 15
Maximum number of patients per arm 30
Maximum total number of patient in the trial
Input Cohorts Manually
Cohort size for Interim Analysis
Cohorts for Interim Analysis: (separate by a comma)
Randomization Method
Adaptive Randomization Cohort Size
AR Method
Adaptive Randomization Tuning Parameter/Allocation Function Parameter
Allocation Function Parameter

Minimum Randomization Probability for each testing arm




Operating Characteristics Input (Continued)

Input Parameter Input Value
Minimum Randomization Probability for each testing arm 0.05
Number of Simulations for calculating AR 10000
Number of Simulated Trials
Seed 2000
Early Stopping for Futility TRUE
Reference response rate for futility monitoring 0.3
Probability confidence threshold for futility stopping 0.9
Early Stopping for Efficacy TRUE
Reference response rate for efficacy monitoring 0.3
Probability confidence threshold for claiming efficacy early 0.9
Reference response rate for final decision 0.3
Probability confidence threshold for claiming efficacy 0.8
Auto Generated Graph Parameters TRUE
Color red,blue,purple,green3,magenta,cyanz
Line Type 1,2,.34.56
Point Symbol 1,2,.3.4.56



Table OC1: Overall Summary

Arm Resp.Rate Prob.FutStop Prob.Eff.Stop Prob.Declare.Eff Avg.N.Patients Avg.N.Resp Obs.Resp.Rate Arm.Usage

t (02 o3 o T

2 03 0.202 0.187 0223 25.191 1523 0.2986 1
3| 04 0.036 0.531 22485 9.003 0.4004 T
4 02 0.611 0019 0022 2542 4473 0.1984 1
o 03 0.215 0.201 0.253 24.942 1451 0.2987 T
6 04 0.033 0547 0.646 22.269 8.952 0.402 1




Figure OCa3: Distribution of the Accrual Interval
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Figure OC4: Probability of Randomization by Arm
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Figure OC5:

Early Stopping Due to Futility
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Figure OCG6: Early Stopping Due to Efficacy
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Figure OC7: Probability of Declaring Efficacy
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Bayesian Hierarchical Model (BHM)

for Basket Designs
1 Clinical Trials often have subgroups
— Different histology subtypes in breast cancer/lung cancer/sarcoma
— One drug in multiple diseases or multiple drugs in a single disease
— Multi-regional studies

1 How do we analyze data?

— Treat each subgroup separately
1 Do not use information efficiently

— Combine all subgroups into one group

1 Not all groups are the same (iid assumption is too strong and may not
hold in most cases)

1 Bayesian hierarchical model can borrowing information
across subgroups under the exchangeability assumption.

— More borrowing when subgroups are more like and less borrowing
when subgroups are more different. (nice!)

— But, what to do if the subgroups are not exchangeable?

33



An lllustrative Example

1 Suppose we run a clinical trial with one drug in 5
subgroups.

1 The primary endpoint is binary: Response or No
Response. We are interested in estimating the
response rate, p

1 We want to know whether the drug works or not in
each subgroup

1 We observe the following outcome:
— (number of responses/n): 1/15, 2/18, 3/10, 7/15, 8/20
— Estimated response rate: 0.07, 0.11, 0.30, 0.47, 0.40

1 Can we apply Bayesian hierarchical model to
borrow information across subgroups? How?

34



Bayesian Hierarchical Model — BLN (Binomial, Logit, Normal)

There are m groups.
Observe the number of successes for each group:
y; ~Bin(p;, n;),i =1,...,m
Take a logit transformation on p; and let
log(pi/(1-p;)) = 6;
Assume 6; are exchangeable and 8;~ N(u,0%)=N(u,t71),
where T = o0~# is the precision parameter

Assume the hyper-prior for u ~ N(uy, 7o~ 1) , and
Assume the hyper—prior for t ~ Gamma (I, I;)
Compute the posterior distribution for
— p; under no borrowing with the prior for p;~Beta(a,, by)
- p; under the BHM model described above
— p under the i.i.d. model with p; =p
- p under the BHM model with p = 1/(1 + exp(—u))

35



Weak Borrowing

Parmameters for BHM
Hyyer Brior =TT R CDwerall Success Rate for iid Model, Beta(21,57) Swverall Success Rate for Bayesian Hiermarchical Model
b LT e TN LE T U =5 LLIE Mean = 0.27 Mean = 0.27
Bl 2 Credible Interval = 0.2, 0.33] 8l % Credible Interval = [0.01, 0.47]

Probakility Dersiy

Pricr distribution for p

O D1

o

Credible Interval (1-a )
Success Rals
EHM, Mean(SD)

MNo Borrowing (NE), Mean{SD)
0.081 (0.065)

WWINBILGS Settings
Group = 1, Beta(1,14), 0.067 (0.052)

Bumin =
Sample Informatiom k
o118 (0.072)

Group = 2, Beta(2,16), 0.111 (0.072)

Mumber of Groups
: N K
0,296 (0.1 35)

Group = 3, Betal(3,7), 0.3 (0.138)

Probakility Dersity

Group = 4, Beta(7,B), 0.467 (0.125) 0.455 (0.123)

Group = 5, Beta(8,12), 0.4 (0.107) 0. 394 (0.106)

Data: 1/15, 2/18, 3/10, 7/15, 8/20

1 o
Success Raile




Strong Borrowing

ra

10

Pricr distribution for p  :Bet

Credible Interal (1-a ) x 10

WIinBLUGS Settings
Buwmin

1000

Sample Information

Mumber of Groups

=

Data: 1/15, 2/18, 3/10, 7/15, 8/20

Owerall Success Rate for iid Model, Beta(21,57)
Mean = 0.27T
B0 %% Credible Interval = [0.2, 0.33]

Owverall Success Rate for Bayesian Hierarchical Model
Mean = 0.28
20 %% Credible Interval = [0.21, 0.35]

Success Rale

No Borrewing (NE), Mean(SD)

EHM, Mean(SD)

Group = 1, Beta(1,14), 0.067 (0.062)

0.281 (0.055)

2, Beta(2,16), 0.111 (0.07Z)

0.281 (0.055)

Group = 3, Beta(3,7), 0.3 (0.138)

0.282 (0.055)

Group = 4, Beta(7,8), 0.467 (0.125)

0.282 (0.055)

Group = 5, Beta(8,12), 0.4 (0.107)

0.282 (0.055)

1 o

Success Rale




Moderate Borrowing

Owerall Success Rate for iid Model, Beta{21,57) Success Rate for Bayesian Hierarchical Model
Mean = 0.27 Mean = 0.27
80 % Credible Interval = [0.2, 0.33] 80 2. Credible Interval = [0.08, 0.43]

T

Hyper Pricr for precision of mu, taw:
r a

0.01

Probability Derwsity

Pricr distribution for p , :Betala
ag b

Y.

Credible Interval (1-a ) x 100%: a a
Succesz Rale

No Borrowing (NE), Mean(SD) EHM, Mean(SD)

WINBUGS Settings
0,141 (0.079)

Group = 1, Beta(1,14), 0.067 (0.062)

Biwrmin
Sample Information k

Group = 2, Beta[2,16), 0.111 (0.072)

MNumber of Groups
= [\

Group = 3, Beta(3,7), 0.3 (0.138)

0.161 (0.075)

0.282 (0.113)

e Size for Each Group (ssy
comima)

0.397 (0.114)

15,18,10,15,20
Group = 4, Betal7,B), 0.467 (0.125)

0.36 (0.008)

Group = 5, Beta[B,12), 0.4 (0.107)

Data: 1/15, 2/18, 3/10, 7/15, 8/20

1 [u]
Success Rale




Bayesian Classification and Information Sharing
(BaClS)

1 Traditional Bayesian hierarchical models do not have
subgroup classifications; thus, information is shared
across all subgroups.

1 When the subgroups have very different outcomes,
placing all subgroups in one pool and borrowing
Information across all subgroups can result in
substantial bias.

1 BaClS allows smart borrowing which borrows across
“similar” subgroups and does not borrow across
“dissimilar” ones. BaClIS yields better operating
characteristics across a wide range of scenarios with
high statistical power while controlling type | error rate.

Chen, N. and Lee, J. J. Bayesian hierarchical classification and information sharing for clinical trials
with subgroups and binary outcomes, Biometrical Journal 2019. 39



Model Specification

In a Phase Il clinical trial with a binary endpoint, assume
that there are K subgroups. For each subgroup, there are
n; patients with a response rate p; The number of
responses:

Y.~Binomial(n;,p;),i =1, ..., K.

Taking the hypothesis testing framework, subgroups are
classified into two clusters: drug works or drug does not
work.

Subsequently, information sharing takes place within
subgroups in the same cluster, but not across different
clusters.

Two-step approach:
— Step 1: Classification (Model 1)
— Step 2: Information Sharing within each cluster (Model 2)

40



Step 1: Classification (Model 1)

Outcome Y;~Binomial(n;,p;)
logit(p;) = n;
ni~Normal(y;, 1)

Classification with Latent I =1,if 6; <0

Variables I, =2,if 6; >0
0;~Normal(0,t,) iI=1,...,K

¢1: Low Response Rate

¢,: High Response Rate yj~logit(¢;) j=1,...,2

Mimicking Hypothesis Testing Framework: Hy: p; < ¢, VS Hi:p; > ¢4

Subgroup i is classified into Cluster 1 if Prob(6; > 0) > 6, or Cluster 2

otherwise. 6, =1— 1 —— where A, = (ézl _ ¢1:¢2)_

1+exp{—¢2_¢1}
0. is determined adaptively. When the overall observed response rate is
closer to the average of ¢, and ¢,, A, is closerto 0. Thus @, is closer to O.
When the overall observed response rate is large, A, is large, 6. becomes
small. Thus, more subgroups are classifed into the high response rate
cluster (Cluster 2) and vice versa. 41




Step 2: Subgroup Borrowing within
Each Cluster Using Bayesian
Hierarchical Model (Model 2)

Y;~Binomial(n;, p;)
Outcome logit(p;) = n;
n;~Normal(u, t3)

u~Normal(ug, T4)
7,~Gamma(a, B)

Ho = logit()

Hyper Prior

An R-Package: bacistool is available.
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Posterior Distributions of Response Rates

Response Rates of All Groups Response Rates of Two Clusters
Obs. Post
Resp. Resp.
— Arm1 0.07 0.09
S - — Arm2 0.11 0.10
Arm 3 0.30 0.36
— Arm4 047 043
Arm5 0.40 0.40
L | o _|
—i i
> > Posterior Mean
£ £
c c
g 9 4 g g {0092
0.397
O — L —
A_A /\ J
| | | | | | | |
0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6

Response Rate Response Rate

Posterior distributions of (a) response rates of all treatment arms, and

(b) response rates of two clusters with outcomes of (1/15, 2/18, 3/10, 7/15, 8/20).



THE UNIVERSITY OF TEXAS Biostatistics Software --- Desktop / Cloud
MDAnderS()n By Quantitative Research Computing at MD Anderson Cancer Center

G&HGGFCEH’[EI‘ This is free software that can be used

Designing and conductlnF cllnlcal trlals in the medical field
. Data analysis and statistial calculations
* Demonstrating concepts and theory in probability and statistics

DESKTOP SOFTWARE

DREAE user

Software Online Kiosk
CLOUD SOF ARE I
CORE DEVELOPMENT TEAM DISCLAIMER: Unless otherwise stated on a subsequent application-specific web page, these programs are for research purposes only. We provide absolutely no warranty
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CONTAGIIDS quality and performance of these programs is with the user. Should any of these programs prove defective, the user assumes the cost of all necessary servicing, repair, or
WHERE ARE OUR USERS correction. In no event shall The University of Texas or any of its component institutions, including MD Anderson Cancer Center, be liable for damages, including any lost

profits, lost monies, or other special, incidental or consequential damages arising out of the use of or inability to use these programs (including but not limited to loss of

data or its analysis being rendered inaccurate or losses sustained by third parties).

Software Category

Phase I
Phase Il
09 2019-04-09 Platform Design of Bayesian Adaptive Randomization with
Phase I-1I Posterior Probability
Sample Size Calculation
Bayesian
i 09 2019-04-05 Bayesian Adaptive Randomization and Efficacy Monitoring
. I with Posterior Probability
Clinical trial

Randomization

Dose finding 09 2019-04-01 Platform Design of Bayesian Adaptive Randomization with
Posterior Probability Simulator
Educational

Trial Monitoring
Time to Event

09 2019-03-29 Bayesian Adaptive Randomization and Efficacy Monitoring

Binary Outcome i - - )
with Posterior Probability — A Simulator

Survival Analysis

A multi-arm platform design with Bayesian adaptive
randomization and efficacy monitoring via posterior probability
for binary outcomes. The design allows futility and/or efficacy
early stopping with or without a control group. The application
provides design operating characteristics and can be used for
study conduct. Number of concurrent arms and maximum
number of arms can be specified.

A multi-arm design with Bayesian adaptive randomization and
efficacy monitoring via posterior probability for binary outcomes.
The design allows futility and/or efficacy early stopping with or
without a control group. The application provides design
operating characteristics and can be used for study conduct.

Simulating one trial at a time for the multi-arm platform design
with Bayesian adaptive randomization and efficacy monitaring
via posterior probability for binary outcomes. The design allows
futility and/or efficacy early stopping with or without a control
group. Animation is provided to illustrate how a trial evolves over
time. Number of concurrent arms and maximum number of arms
can be specified.

Simulating one trial at a time for the multi-arm design with
Bayesian adaptive randomization and efficacy monitoring via
posterior probability for binary outcomes. The design allows

https://biostatistics.mdanderson.org/softwareOnline/
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Clinical Trial Design Software

Filter by: mm BASKET & PLATFORM SAMPLE SIZE CALCULATION m

Instructions: To access the software online click the red circle or the title. To download a desktop version, click the download arrow. To expand software description, mouse over the description.

BOIN Suite

Bayesian optimal interval (BOIN)
designs provide a novel platform fo
design phase more...

Time-to-Event Keyboard

The time-to-event keyboard design
can handle toxicity data that are
pending due more...

Time-to-Event Bayesian
Optimal Phase Il Trial Design
The time-to-event Bayesian Optimal
Phase Il (TOP) design is a flexible and
efficient design for phase 1l clinical
trials. more...

Bayesian Toxicity Monitoring
Bayesian toxicity monitoring for
evaluating drug safety.

Calibrated Bayesian
Hierarchical Model Design
Bayesian hierarchical modeling has
been proposed to adaptively borrow

http://trialdesign.org

CRM & BMA-CRM
The continual reassessment method
(CRM) is a model-based dose-finding
approach more...

A

Simon’'s Two Stage Design
The Simon's two stage design is a
commeonly used phase |l design. It
controlls type 1 more...

Bayesian Efficacy Monitoring
with Predictive Probability
Bayesian efficacy monitoring with

options of early futility more...
3

Bayesian Efficacy Monitoring
with Posterior Probability
Bayesian efficacy monitoring with
options of early futility and/or efficacy
stopping using posterior probability.

Bayesian Latent Subgroup
Design for Basket Trials

The innovation of the BLAST design is
that it adaptively clusters cancer types

1310)

OBD

Keyboard Design

The keyboard design provides an
upgrade to the modified toxicity
probability more...

Bayesian Optimal Phase 2
(BOP2) Design

The Bayesian optimal phase Il (BOP2)
design is a flexible Bayesian design
that allows more...

Bayesian Phase 2 Design with
Delayed Qutcomes

One practical impediment in adaptive
phase |l trials is that outcomes must
be observed scon enough more...

Find Optimal Biological Dose
for Immunotherapy

Down for maintenance. Sorry for
the inconvinience.

Bayesian Drug Combination
Platform Trial Design with
Adaptive Shrinkage

ComPAS provides a flexible Bayesian



Summary (1)

1 Traditional clinical trial design: One trial, one drug at
a time, discrete phase, infrequent interim analyses
approach is inefficient, expensive, and results In
high failure rate

1 Master protocol / platform designs can
— Study multiple drugs and populations in one trial.

— Eliminate white space between trials in separate phases
— Frequent monitor toxicity and efficacy

— Drop bad arms by early stopping for futility
— Graduate good arms by early stopping for efficacy
— Add new arms

— Assign more patients to more effective treatments by
adaptive randomization

— Continuously learn and improve in a perpetual trial
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Summary (2)

1 Basket Designs can
— Evaluate the drug effect in multiple subgroups.

1 Bayesian hierarchical model can

— Borrow information from all available data (external and
Internal to the trial) to increase efficiency in evaluating
treatment effect.

— “Smart borrowing” allows borrowing among the “similar”
subgroups and restrict borrowing across “dissimilar” groups
by classifying the subgroups to clusters first, then, borrow
within the clusters.

1 Conduct more innovative trials to learn and to adapt
SO we can expedite progress.

Let’s roll up our sleeves, implement
novel designs, and make a difference!
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