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Component-Based Methods 
construct mutually orthogonal components that
are weighted sums of X. The difference is what
each method’s “weight” maximizes:

Principal Component Analysis (PCA)
Var(X)

Sparse PCA (SPCA)
Var(X) + elastic net penalty on weight

Partial Least Squares (PLS)
Cov(X,Y)

Sparse PLS (SPLS)
Cov (X,Y) + soft-threshold (L1 norm)
penalty on surrogate weight

Tuning Parameter Selection
10-fold cross validation to select the “simplest”
reasonably-predictive model using the 1-
standard error test.

For sparse methods, I adapted this test to
search across a grid of candidate parameters.

Data Pre-Processing
Baseline BMI was pre-adjusted for age, gender,
race/ethnicity, intentional exercise, and total
caloric intake

Baseline diet data (120 food/beverage servings-
per-day) were normalized

Analyzed in R :: pls, elasticnet, & spls

Nutritional Epidemiology Problem
Difficult interpreting diet patterns from
unsupervised methods, as they aren’t
driven by heart disease (CVD) risk

Study Proposal
Use supervised dimension-reduction
methods, which do include disease data

Goal: BMI-Related Dietary Patterns
Why? Excess body weight is an

important pathway between nutrition
and heart disease

How? Using component-based methods
on food frequency data

Who? MESA is a prospective cohort
study that tracks > 6,400 healthy multi-
ethnic older adults since 2000 as some
progress from subclinical to clinical CVD

➢ SPCA ≤ PCA: fewer foods and streamlined patterns,
but more components and huge computational burden

➢ PLS > PCA: better predictive ability and fewer, more-
relevant components

➢ SPLS > PLS: far fewer variables needed for similar
number of components and similar predictive ability
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Method CV-RMSE # Comp. # Var. % R2

PCA 4.97 8 120 1.5

SPCA 4.95 27 104 3.5

PLS 4.94 1 120 3.9

SPLS 4.94 2 9 3.2

Note: CV-RMSE = Cross-Validated Root Mean
Squared Error, Comp. = Components,
and Var. = Variables.

Conclusion
➢ By using BMI data and variable selection, SPLS

created a more interpretable dietary pattern

→ In simulations, PLS-based methods picked the fewest
patterns and SPLS discarded most noise variables

➢ SPLS can provide useful scientific insight for
nutritional epidemiologists who want dietary
patterns that are tailored to heart disease risk

Table 1. Summary of BMI-related diet patternsFigure 1. What is a heart-healthy diet?

Note: “Relatedness” = squared correlation with BMI.

Figure 2. BMI-related diet pattern from SPLS


