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Two-level Block Fractional Factorial Designs
(BFFDs)

•A FFD with k two-level attributes: 2k−p

– Treatment defining contrast subgroup: p defining words and their
products

– Resolution: length of the shortest word in the treatment defining
contrast subgroup

– Let Ai,0 be the number of words of length i (i = 1, . . . , k) in the
treatment defining contrast subgroup

– Consider designs with resolution III or higher: A1,0 = A2,0 = 0

– Treatment wordlength pattern: Wt = (A3,0, . . . , Ak,0)

• Two-level BFFD: 2k−p FFD in 2q blocks with blocks of size 2k−p−q

– Two defining contrast subgroups: the treatment defining contrast
subgroup and the block defining contrast subgroup

– Let Ai,1 be the number of treatment words of length i that are
confounded with a block effect (A1,1 = 0)

– Block wordlength pattern: Wb = (A2,1, . . . , Ak,1)

•A main effect or a two-factor interaction is clear in a BFFD if it is
not aliased with any other main effects or two-factor interactions, or
confounded with any block effects

Examples
Example 1: 25−1 FFD

• Treatment defining contrast subgroup I = ABCDE

• Treatment wordlength pattern: Wt = (A3,0, A4,0, A5,0) = (0, 0, 1)

Example 2: 25−1 FFD in into 2q = 22 blocks, each of size 2k−p−q =
25−1−2

• Treatment defining contrast subgroup: I = ABCDE

• Block defining contrast subgroup: b1 = AB, b2 = AC, and b3 =
b1b2 = BC

•All five main effects are clear plus seven two-factor interactions

• Block wordlength pattern: Wb = (A2,1, A3,1, A4,1, A5,1) =
(3, 3, 0, 0), i.e., three two-factor interactions (AB,AC,BC) and
three three-factor interactions (CDE,BDE,ADE) are confounded
with block effects.

Minimum Aberration Criteria

• Propose the MA criteria for selecting BFFDs to construct DCEs

• For any two 2k−p designs d1 and d2, let r be the smallest integer
such that Ar(d1) 6= Ar(d2). Then d1 is said to have less aberration
than d2 ifAr(d1) < Ar(d2). If there is no design with less aberration
than d1, then d1 has minimum aberration (Wu and Hamada, 2009)

Discrete Choice Experiments (DCEs)

•Method for understanding subjects preferences and their decision-
making process

– Present subjects with various choice sets of two or more options
– Options consist of several attributes at one or more levels
– Subjects are shown each choice set in turn and asked which option

they prefer
– The option chosen in each choice set is the most beneficial (utility)

Evidence from a Discrete Choice Experiment

•Goal: Determine which snack factors affect school-aged children
snack preferences and to quantify their relative importance using
Discrete Choice Experiments

Simulation
•Multinomial logit (MNL) model: common model for modeling re-

sponses and analyzing data from a DCE
•Assume true model: 5 main effects plus 3 two-factor interactions

µ = 0.5xA − 0.5xB + 0.5xC − 0.5xD + 0.5xE + 0.25xAxC −
0.25xAxD + 0.25xBxE

• Consider three 25−1 FFDs in 22 blocks and for each design we fit
two models:
1. Main effects only
2. All main effects and all clear two-factor interactions plus one two-

factor interaction from each aliased set not confounded with block
Design Treatment defining

words
Block defining words Wt Wb

Design 1 I = ABCDE b1 = AB, b2 = AC, b3 = BC (0, 0, 1) (3,3,0,0)

Design 2 I = ABCE b1 = ACD, b2 = BCD, b3 = AB (0, 1, 0) (2,4,0,0)

Design 3 I = ABE b1 = AC, b2 = ABCD, b3 = BD (1, 0, 0) (2,3,1,0)

Main Effects Only Models
Effect Design 1 Design 2 Design 3

A 0.604 (0.032) 0.772 (0.033) 0.889 (0.041)

B -0.455 (0.032) -0.391 (0.033) -0.567 (0.040)

C 0.509 (0.032) 0.609 (0.029) 0.471 (0.032)

D -0.557 (0.027) -0.502 (0.026) -0.606 (0.028)

E 0.387 (0.026) 0.341 (0.029) 0.512 (0.037)

Main Effects Plus Two-Factor Interactions
Effect Design 1 Design 2 Design 3

A 0.506 (0.048) 0.555 (0.044) 0.792 (0.051)

B -0.524 (0.048) -0.503 (0.045) -0.533 (0.051)

C 0.549 (0.048) 0.464 (0.044) 0.497 (0.051)

D -0.484 (0.048) -0.435 (0.046) -0.456 (0.041)

E 0.454 (0.048) 0.482 (0.045) 0.502 (0.051)

AB – – –

AC – 0.467 (0.045) –

AD -0.246 (0.048) -0.28 (0.038) -0.262 (0.039)

AE 0.028 (0.048) -0.025 (0.041) –

BC – – 0.029 (0.050)

BD 0.038 (0.048) 0.039 (0.045) –

BE 0.239 (0.048) – –

CD -0.005 (0.048) -0.015 (0.038) 0.011 (0.029)

CE 0.012 (0.048) – -0.053 (0.051)

DE -0.017 (0.048) -0.041 (0.045) -0.057 (0.041)

Simulation Results

1. Effects confounded with block effects are not estimable, but do not
bias estimate of other effects

2. Aliasing causes bias, but aliased effects are estimable if all aliases
are negligible

3. Aliasing or missing a significant two-factor interaction can bias esti-
mation of main effects even if all main effects and two-factor inter-
actions are clear

Hence, it is essential at the design stage to know the aliasing and
confounding structure of the design.

Discussion

•Understanding school-aged adolescents’ snack preferences could
help tailor nutrition education programs at school to educate stu-
dents to make better snack choices outside school

Snack Factors Log-likelihood Relative Effect Relative Importance
Whole Grain -915.750 0.253 1
Salt -914.227 0.243 2
Protein -908.196 0.204 3
Calories -900.004 0.150 4
Sugar -899.939 0.150 4
Full Model -877.259

•Our designs are optimal for estimating parameters in the MNL
model under the assumption that all options are equally attractive
(Bush, 2014)

– Locally optimal (or D-optimal) designs

– A potential problem with this approach is that if the nominal val-
ues are misspecified, the locally optimal design may be potentially
inefficient

– Alternative design approaches: Bayesian approach, maximin ap-
proach, or sequential approach
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