Using Design of Experiments to Determine Consumer Preference with Applications to Health Science

Jessica Jaynes ${ }^{1}$, Pimbucha Rusmevichientong ${ }^{1}$, Laura Chandler ${ }^{1}$, Hongquan Xu ${ }^{2}$, Weng Kee Wong ${ }^{2}$ California State University, Fullerton; ${ }^{2}$ University of California, Los Angeles

Contact Information: Jessica Jaynes

 Assistant Professor of StatisticsDepartment of Mathematics
California State University, Fullerton Email: jjaynes@fullerton.edu

- Multinomial logit (MNL) model: common model for modeling re Multinomial logit (MNL) model: com
- Assume true model: 5 main effects plus 3 two-factor interactions

$$
\begin{aligned}
& \text { Assume rue moce: } 5 \text { mand } 5 x_{A}-0.5 x_{B}+0.5 x_{C}-0.5 x_{D}+0.5 x_{E}+0.25 x_{A} x_{C}-
\end{aligned}
$$

$$
0^{B} 25 x_{A} x_{D}+0.25 x_{B} x_{E}
$$

- Consider three 2^{5-1} FFDs in 2^{2} blocks and for each design we fit two models:

1. Main effects only
effects and all clear two-factor interactions plus one two factor interaction from each aliased set not confounded with block

Deisg	Treatment	deffing Block defining wors	$W_{t} \quad W_{s}$
Decien 1	$I=A B C D E$	$b_{1}=A B, b_{2}=A C, b_{3}=B C$	(0,0, 1) $(3,3,0,0$
Desis	$I=A B C E$	$b_{1}=A C D, b_{2}=B C D, b_{3}=A B$	${ }^{(0,1,0)}(2,4,0,0$
	$=A B E$	$h_{1}=A C, b_{2}=A B C D, b_{2}=B D$	

Main Effects Only Models

Main Effects Plus Two-Factor Interactions

	0.5060 .0048	0.555 (0.04)	0.792 (0.051)
${ }^{\text {b }}$	-0.524(0.08)	O3(0.04)	0.533 (0.051
c	0.549 (0.04)	464 (0.04)	0.9770 .05
	-0.444(0.048	$5(0.046)$.0.4660.04
	0.4540	20	0.50220 .0
${ }_{\text {AB }}$			
		$0.467(0.045)$	
AD	46 (0.048)	-0.280.0.38)	
	0.028 (0.048)	50.	
вс			
bD	(0.039 (0.45)	
	9(0.48)		
cD	-0.005 (0.048)		

Simulation Results

Effects confounded with block effects are not estimable, but do not bias estimate of other effects
. Aliasing causes bias, but aliased effects are estimable if all aliases are negligible
3. Aliasing or missing a significant two-factor interaction can bias estimation of main effects even if all main effects and two factor inter actions are clear
Hence, it is essential at the design stage to know the aliasing and onfounding structure of the desig.

Discussion

Understanding school-aged adolescents snack preferences could help tailor nutrition education programs at school to educate students to make better snack choices outside school
Snack Factors Log-likelihood Relative Effect Relative Importance

Whole Grain	-915.750	0.253	1
Salt	-914.227	0.243	2
Protein	-908.196	0.204	3
Calories	-900.004	0.150	4
Sugar	-899.939	0.150	4
Full Model	-877.259		

- Our designs are optimal for estimating parameters in the MNL model under the assumption that all options are equally attractive (Bush, 2014)
- Locally optimal (or D-optimal) designs
- A potential problem with this approach is that if the nominal valA potential problem with this approach is that if the nominal val inefficient
- Alternative design approaches: Bayesian approach, maximin approach, or sequential approach

