Incorporating Record Linkage Measurement Error into Descriptive Network Metrics

Objectives

After conducting a literature review and identifying application areas, we aim to:

- Understand how record linkage errors arise in network analysis, and take them into account when describing a network structure
- Develop "best reporting practices" for errors in a linked dataset when performing basic network inferences

Introduction

Record linkage aims to find matches between groups of records from separate datasets in an effort to recover the true unique people across multiple datasets. The linkage process is often crucial in Census work, the creation of health indicators, and historical research. Records are susceptible to various forms of distortion: letters can be out of order or missing, punctuation can be misplaced, and abbreviations can be varied. For recent advances in record linkage, see papers by Sadinle (2017) and Steorts (2015) who specify Bayesian/latent class models for record linkage.

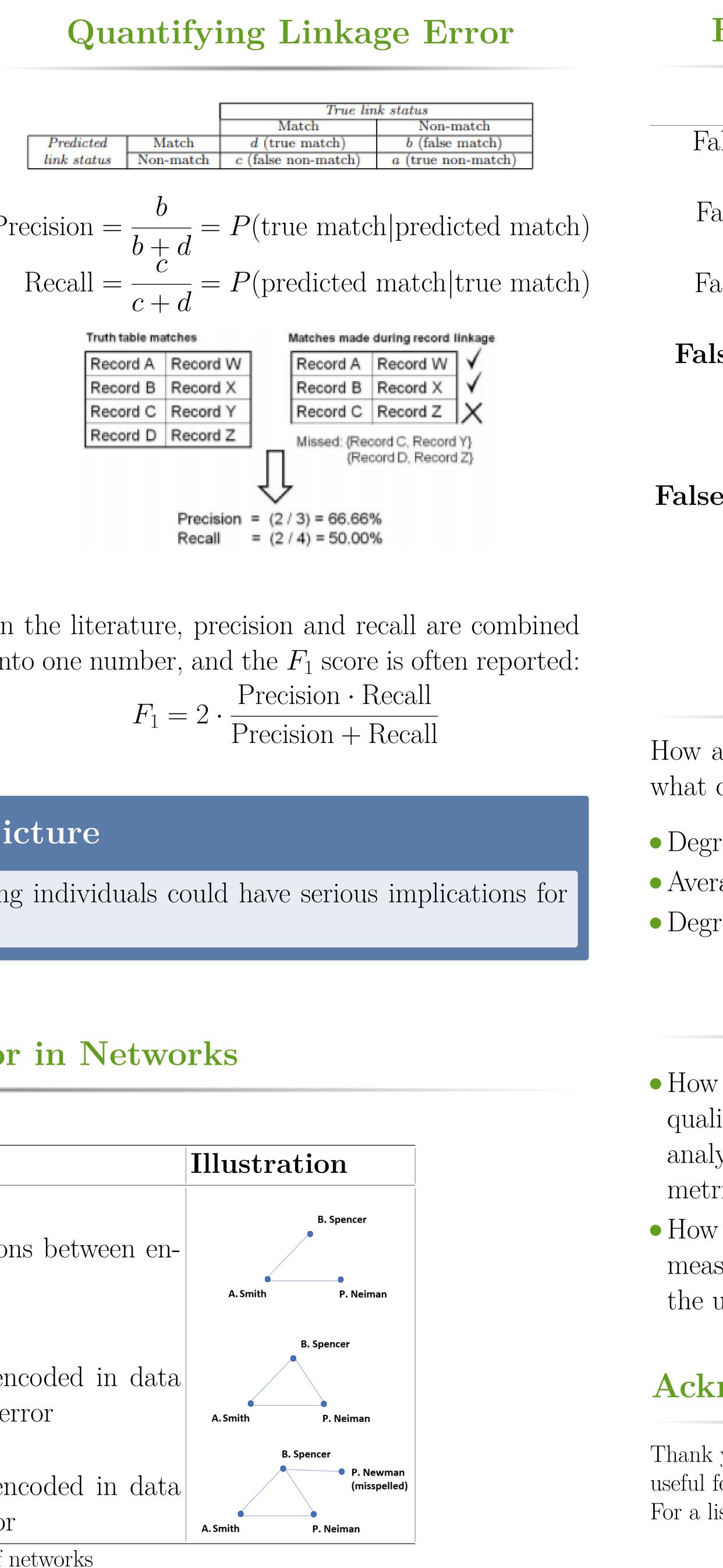
Datafile 1				Datafile 2		
Name	DOB			Name	DOB	
John M. Doe	Feb/11/1990		- /	John Doe	NA/NA/1990	
John H. Doe	Apr/24/1990		/ ? ?******			
John G. Doe	Oct/03/1990		****			
			?	Juan Gómes	Jul/NA/1950	
Juan A. Gómez	Jul/NA/1950		~*************************************	Juan A. Cómez	Jul/02/1950	

Figure 1:An example linkage problem

There are even more sources of measurement error in a network; for example even if respondents report the correct spellings of friends names, the understanding of what qualifies as a friendship tie could vary.

Abby Smith

Northwestern University, Department of Statistics


Generate potential comparison pairs . Block to reduce computation time, i.e require that to consider a pair of records it match on a logical string (ex. first name AND last name OR Date of Birth).	D
2 Generate a comparison vector for each potential pair. i.e If there are 3 fields (name, birth date, address), you could observe 100, 101, 001, etc.	Ρr
3 For each of the records: compute a m	
probability : the probability that you would	
observe a certain "comparison pattern" given that	
the pair of records is a true match. Compute a u	
probability (non-match).	
Assign a weight based on how well it matches,	
using the EM algorithm.	
5 Calculate a composite score for each pair from	
all of the matching weights.	In
⁶ Determine whether a record pair is a match,	int
non-match, or possible-match by comparing	
each composite score to a given threshold.	

The Big Picture

With messy social science data, erroneous linkage among individuals could have serious implications for both structural and node-centric network metrics.

Measurement Error in Networks

Network Types	Description
True network	Network of true relations tities
Clean network	Network of relations enc without measurement err
Observed network	Network of relations enc with measurement error
	Figure 2:Types of ne

Examples of Network Error

Error	Example
alse negative nodes	Non-response in the
	Census
alse positive nodes	Fake accounts in an in-
	ternet sample
alse negative edges	Imperfect respondent
	recall about friends
lse "aggregation"	Coauthorship network:
	mistakenly treating dif-
	ferent authors as the
	same author
e "disaggregation"	Coauthorship network:
	mistakenly treating the
	same author as differ-
	ent authors
	I

Network Metrics

How are these affected by record linkage error? In what cases are they more/less sensitive?

- Degree distribution
- Average clustering
- Degree centrality
- Clustering coefficient
- Network constraint
- Eigenvector centrality

Questions of Interest

• How can standard reported metrics of linkage quality (such as the F_1 measure) inform network analysis? Are there are other (non-standard) metrics to consider?

• How can information about network

measurement errors be meaningfully reported to the user, particular when model fitting?

Acknowledgements and References

Thank you to my advisor Bruce Spencer for his guidance and useful feedback.

For a list of references: http://bit.ly/abby_WSDS2019