# Modeling Vector Random Fields on a Sphere: Application on Geomagnetic Field

#### Amy Kim

Debashis Paul, Thomas Lee, Tomoko Matsuo University of California, Davis

atykim@ucdavis.edu

October 5, 2019

JOC ELE

A B M A B M

#### Overview



- 2 Vector Spherical Harmonics
- 3 Modeling Vector Random Fields on Sphere
- Application to Geomagnetic Field



#### Table of Contents

#### Introduction

- Vector Spherical Harmonics
  - Properties of Spherical Harmonics
- 3 Modeling Vector Random Fields on Sphere
  - Tangential Vector Random Field Modeling
  - Proposed Model
  - Connect to Natural Constraints
  - Simulation Study
- Application to Geomagnetic Field
  - Earth's Magnetic Fields
  - Results of the Modeling on Geomagnetic Field
- Conclusion

(4) (3) (4) (4) (4)

#### Motivation

- Prediction and modeling fluctuations in multivariate processes
- Interested in vector random fields on a sphere
- Unified framework for modeling both mean and residual fields
- Producing a meaningful decomposition of vector fields on a sphere



Figure: Wind Map <sup>1</sup>, Ocean Current <sup>2</sup>, Geomagnetic Field <sup>3</sup>

```
<sup>1</sup>https://www.theregister.co.uk/
<sup>2</sup>NASA
<sup>3</sup>https://www.sciencealert.com/
Amy Kim (UC Davis)
```

# Helmholtz-Hodge Decomposition

Any vector field  ${\bf v}$  can be decomposed as

$$\mathbf{v} = \mathbf{v}_{\mathsf{curl-free}} + \mathbf{v}_{\mathsf{div-free}} + \mathbf{v}_{\mathsf{harmonic}}$$

where  $\mathbf{v}_{curl-free}$  is a curl free,  $\mathbf{v}_{div-free}$  is a divergence free, and  $\mathbf{v}_{harmonic}$  is both divergence-free and curl-free and is the gradient of a harmonic functions.



vector field = curl-free + div-free

Figure: Decomposition of Vector Field <sup>4</sup>

(1)

<sup>&</sup>lt;sup>4</sup>https://images.app.goo.gl/Yv79h7N2SeeYJVi96

#### Models for Multivariate Random Fields

Vector Random fields can be treated as multivariate processes.

- Multivariate Matérn Model (Gneiting et al. (2010), Apanasovich et al. (2012))
- Multivariate Random Fields on globe (Jun (2014), Jun (2011))
- Tangent Matérn Model (Fan et al. (2018))

ELE SQC

#### Our Approach

Modeling vector random field on a sphere:

- Vector Spherical Harmonics: basis functions for vector fields defined on sphere, S<sup>2</sup>, where S<sup>2</sup> = {x ∈ ℝ<sup>3</sup> : ||x|| = 1}
- Model mean and error fields simultaneously (Linear mixed effect model approach)
- Produce physically meaningful vector fields

# Table of Contents

#### Introduction

- 2 Vector Spherical Harmonics
  - Properties of Spherical Harmonics
- Modeling Vector Random Fields on Sphere
  - Tangential Vector Random Field Modeling
  - Proposed Model
  - Connect to Natural Constraints
  - Simulation Study
- Application to Geomagnetic Field
  - Earth's Magnetic Fields
  - Results of the Modeling on Geomagnetic Field
- Conclusion

ELE SQC

(4) (5) (4) (5)

#### Spherical Coordinate System



Figure: Spherical Coordinate System

Amy Kim (UC Davis)

ъ.

► < Ξ >

### Scalar Spherical Harmonics

For every integer l = 0, 1, 2, ..., and every m = -l, ..., l, the complex Scalar spherical harmonic function  $Y_{l,m}(\theta, \phi)$ 



Visual Presentation of SSH<sup>5</sup>

- Eigenfunctions of the Laplacian on  $\mathbb{S}^2$
- Orthonormal basis of L<sup>2</sup>(S<sup>2</sup>)

<sup>5</sup>By Inigo.quilez - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid≡32782753> = ⇒ ∽ ⊂ ⊙

#### Vector Spherical Harmonics

Given a scalar spherical harmonics  $Y_{l,m}(\theta, \phi)$ , define complex **Vector Spherical Harmonics**  $\{\mathbf{Y}_{l,m}, \mathbf{B}_{l,m}, \mathbf{C}_{l,m}\}$ :

• 
$$\mathbf{Y}_{l,m} = Y_{l,m} \hat{\mathbf{r}}$$
  
•  $\mathbf{B}_{l,m} = \frac{1}{\sqrt{l(l+1)}} \nabla Y_{l,m}$   
•  $\mathbf{C}_{l,m} = -\hat{\mathbf{r}} \times \frac{1}{\sqrt{l(l+1)}} \nabla Y_{l,m} = -\hat{\mathbf{r}} \times \mathbf{B}_{l,m}$   
url $\{\mathbf{B}_{l,m}\} = \nabla \times \mathbf{B}_{l,m} = 0$ , Div $\{\mathbf{C}_{l,m}\} = \nabla \cdot \mathbf{C}_{l,m} = 0$ 

過 ト イ ヨ ト イ ヨ

#### VSH: Tangential Vector Random field modeling

Decomposition tangential vector fields on  $\mathbb{S}^2$ :

$$\mathbf{v} = \sum_{1 \le l, |m| \le l} \left[ f_{l,m}^{B} \mathbf{B}_{l,m} + f_{l,m}^{C} \mathbf{C}_{l,m} \right]$$
(2)

$$\operatorname{Curl}\{\mathbf{B}_{l,m}\} = \nabla \times \mathbf{B}_{l,m} = 0, \quad \operatorname{Div}\{\mathbf{C}_{l,m}\} = \nabla \cdot \mathbf{C}_{l,m} = 0$$

ELE NOR

A (10) N (10)

#### VSH: Tangential Vector Random field modeling

Decomposition tangential vector fields on  $\mathbb{S}^2$ :

$$\mathbf{v} = \sum_{1 \le l, |m| \le l} \left[ f_{l,m}^{B} \mathbf{B}_{l,m} + f_{l,m}^{C} \mathbf{C}_{l,m} \right]$$

$$= \sum_{\substack{1 \le l, |m| \le l \\ \text{Curl-Free}}} f_{l,m}^{B} \mathbf{B}_{l,m} + \sum_{\substack{1 \le l, |m| \le l \\ \text{Divergence-Free}}} f_{l,m}^{C} \mathbf{C}_{l,m}$$
(2)

 $\mathsf{Curl}\{\mathbf{B}_{l,m}\} = \nabla \times \mathbf{B}_{l,m} = 0, \quad \mathsf{Div}\{\mathbf{C}_{l,m}\} = \nabla \cdot \mathbf{C}_{l,m} = 0$ 

# Table of Contents

- Introduction
- 2 Vector Spherical Harmonics
  - Properties of Spherical Harmonics
- Modeling Vector Random Fields on Sphere
  - Tangential Vector Random Field Modeling
  - Proposed Model
  - Connect to Natural Constraints
  - Simulation Study
  - Application to Geomagnetic Field
    - Earth's Magnetic Fields
    - Results of the Modeling on Geomagnetic Field
  - Conclusion

# SSH: Gaussian Random Fields

- The Spectral representation of isotropic fields on  $\mathbb{S}^2({\sf Marinucci}\ \&\ {\sf Peccati}\ (2011))$
- A Gaussian isotropic random field  $h(\theta, \phi)$  on  $(\theta, \phi) \in \mathbb{S}^2$ , with  $\sum_l \sum_m E \|h^2(\theta, \phi)\| < \infty$ , can be defined as

$$h(\theta,\phi) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} f_{l,m} Y_{l,m}(\theta,\phi)$$

where  $f_{l,m}$  are Gaussian random variables, independent across *l*.

#### Tangential Vector Random Field Model on a Sphere

A Gaussian tangential vector random field on a sphere,  $\{y(s) : s \in \mathbb{S}^2\}$ , can be constructed of

$$y(s) = \sum_{l=1}^{L} \sum_{m=-l}^{l} \left[ f_{l,m}^{B} \mathbf{B}_{l,m}(s) + f_{l,m}^{C} \mathbf{C}_{l,m}(s) \right] + \epsilon_{s}$$
(3)

where

- L: the maximum order of vector spherical harmonics
- $f_{lm}^B, f_{lm}^C$ : random complex coefficients (conjugacy relationship m, -m) •  $v(s) \in \mathbb{R}$

▲□ ▲ □ ▲ ■ ▲ ■ ■ ■ ● ● ●

#### Assumptions of TVRF on a Sphere

• 
$$f_{l,m}^B \sim CN(0, \sigma_{B,l}^2), f_{l,m}^C \sim CN(0, \sigma_{C,l}^2)$$

- Independence between  $\{f_{l,m}^B\}, \{f_{l,m}^C\}$
- The coefficients are independent across *I*
- For the fixed *I*, the coefficients are independent identically distributed across *m* subject to conjugacy

• 
$$\sigma_{B,I}^2 = I^{-\alpha_B} \sigma_B^2$$
,  $\sigma_{C,I}^2 = I^{-\alpha_C} \sigma_C^2$ , and  $\alpha_B, \alpha_C > 0$ 

- $\epsilon_s \sim N(0, \tau^2)$ , independent across observed locations (s)
- y(s) has Gaussian distribution.

#### Matrix Form

The observed TVRF  $\mathbf{y} = [y^{\theta}(s_i)_{1 \le i \le n}, y^{\phi}(s_i)_{1 \le i \le n}]^T$  is

$$\mathbf{y} = \mathbf{Z}\mathbf{f} + \boldsymbol{\epsilon} \tag{4}$$

where  $y(s_i) = y^{ heta}(s_i) \hat{oldsymbol{ heta}} + y^{\phi}(s_i) \hat{oldsymbol{\phi}}$ , and

- $\mathbf{y}, \boldsymbol{\epsilon}$ : length 2n vectors
- Z: 2n × p matrix of VSH
- **f** is a  $p \times 1$  vector of random VSH coefficients

• 
$$p = 2(L^2 + 2L) + 2(L^2 + L)$$

Then  $\mathbf{y} \sim N(\mathbf{0}, V)$  where  $V = \mathbf{Z} G \mathbf{Z}^T + \tau^2 I_{2n}$ 

向 ト イヨト イヨト ヨヨ のくら

### VSH: Simulated Field

Let **v** be a tangential vector field on a bounded domain in  $\mathbb{S}^2$ , then it can be expressed as a sum of a curl-free and a divergence-free vector fields:



Figure: Simulated Tangential Vector Field on  $\mathbb{S}^2$ :  $\sigma_B^2 = 20, \sigma_C^2 = 10$ 

#### Simulations

 $\bullet\,$  Estimation results 500 data sets on 20  $\times\,$  20 equiangular grid



Figure:  $L_{\text{True}} = 9, \sigma_B^2 = 20, \sigma_C^2 = 10, \tau^2 = 0.01$  with known  $\alpha_B = \alpha_C = 2$ .

Amy Kim (UC Davis)

< □ > < @ >

ELE DOG

# Table of Contents

- 1 Introduction
- 2 Vector Spherical Harmonics
  - Properties of Spherical Harmonics
- 3 Modeling Vector Random Fields on Sphere
  - Tangential Vector Random Field Modeling
  - Proposed Model
  - Connect to Natural Constraints
  - Simulation Study
  - Application to Geomagnetic Field
    - Earth's Magnetic Fields
    - Results of the Modeling on Geomagnetic Field
  - Conclusion

ELE SQC

< ∃ > < ∃

#### Geomagnetic Field



- Earth's magnetic field: **B**
- B = −∇V (Ampere's Law, Maxwell's equation)
- Curl-free field
- Satellites Data: Magsat, Ørsted, CHAMP, Swarm

ELE SQC

#### Ørsted Satellites



- Data collected from Feb 1999
- High precision mapping the Earth's magnetic fields
- Attitude error anisotropic

< ロ > < 同 > < 三 > < 三 > < 三 > < 三 > < 回 > < ○ < ○ </p>

#### Proposed Model: Geomagnetic Field

Let  $\mathbf{Y}(s, t)$  be the tangential geomagnetic field at location s and time t. Then,

$$\mathbf{Y}(s,t) = \boldsymbol{\mu}(s,t) + \boldsymbol{\varphi}(\boldsymbol{\theta},t)\mathbf{y}(s) \tag{5}$$

where  $\mu(s, t)$  is non-random time varying trend,  $\varphi(\theta, t)\mathbf{y}(s, t)$  is random stochastic fluctuation.

- $\mu(s,t) = \sum_{l=1}^{L_{\mu}} \sum_{m} \{g_{l,m}^{\mathcal{B}}(t) \mathbf{B}_{l,m}(s) + g_{l,m}^{\mathcal{C}}(t) \mathbf{C}_{l,m}(s)\}$ 
  - $\{g_{l,m}^{B}(t)\}, \{g_{l,m}^{C}(t)\}$  are represented in spline basis
- $\varphi(\theta, t)$ : axially symmetric scaling function

• 
$$\mathbf{y}(s,t) = \sum_{l=1}^{L_R} \sum_m \left[ f_{l,m}^B(t) \mathbf{B}_{l,m}(s) + f_{l,m}^C(t) \mathbf{C}_{l,m}(s) \right] + \epsilon(s,t)$$
  
•  $\{ f_{l,m}^B(t) \}, \{ f_{l,m}^C(t) \}$  are independent across  $t$ 

▲□▶ ▲□▶ ▲□▶ ▲□▶ 三回 ののの

#### Proposed Model: Geomagnetic Field

• 
$$\varphi^{x}(\theta, t) = \sqrt{\int \|\boldsymbol{\mu}^{x}(\theta, \phi, t)\|^{2} d\phi}$$
 where  $x = \theta, \phi$ .



Figure:  $B^{\phi}$  (first row) vs.  $\phi$  and  $B^{\theta}$  (second row) vs.  $\phi$  on three different trajectory groups(each columns).

-

#### Results and Comparison to other methods

Comparing our fitted model (VRF):

- $\sum_{t=1}^{15} n_t = 24601$
- $J = 5, L_R = 19$
- Optimization:  $\hat{\sigma}_B^2 = 0.4846, \hat{\sigma}_C^2 = 0.02076, \hat{\tau}^2 = 0.002429$

• AIC: 
$$\hat{L}_{\mu} = 3, \hat{\alpha}_{B} = 3, \hat{\alpha}_{C} = 2$$

With

- Random Forest (RF)
- Generalized Boosted Regression model (GBM)
- Linear Regression with Vector Spherical Harmonics  $L_{\mu} = 3$  with considering time (VSH)

<<p>A 目 > A 目 > A 目 > 目 = のQQ

#### Results and Comparison to other methods



Figure: Fitted vs. Residual Plots

|       | RF        | GBM      | VSH      | VRF      |
|-------|-----------|----------|----------|----------|
| rmse  | 1200.1718 | 351.1564 | 920.4255 | 286.5607 |
| prmse | 1189.4378 | 392.3918 | 920.0997 | 379.1270 |

Table: Comparison of squared-root mean squared error (rmse: sqrt(mean(residuals<sup>2</sup>))) and predicted squared-root squared error(prmse: dataset not used for estimating parameters.) of each four models

#### Vector Field Plot



Figure: Geomagnetic field plot at the first time period

Amy Kim (UC Davis)

三日 のへの

-

#### Vector Field Plot



Figure: Different scale: Clm field is enlarged 3 times scale

EL SQA

イロト イヨト イヨト イヨ

#### Table of Contents

- 1 Introduction
- 2 Vector Spherical Harmonics
  - Properties of Spherical Harmonics
- 3 Modeling Vector Random Fields on Sphere
  - Tangential Vector Random Field Modeling
  - Proposed Model
  - Connect to Natural Constraints
  - Simulation Study
- Application to Geomagnetic Field
  - Earth's Magnetic Fields
  - Results of the Modeling on Geomagnetic Field
- Conclusion

ELE SQC

(4) (3) (4) (4) (4)

#### **Final Remarks**

- Parametric model for tangential vector random fields on the surface of sphere through a vector spherical harmonics representation.
- The vector random field models(random effects) can be estimated by maximum likelihood, BLUP.
- Natural decomposition of the vector field

Future Works

- Improve computational efficiency to handle large amount of data
- Extension the model to incorporate radial component to deal with data on spherical shell (different *r*).

#### References I

- Apanasovich, T. V., Genton, M. G. & Sun, Y. (2012), 'A valid Matérn class of cross-covariance functions for multivariate random fields with any number of components', *Journal of the American Statistical Association* 107(497), 180–193.
- Fan, M., Paul, D., Lee, T. C. M. & Matsuo, T. (2018), 'Modeling tangential vector fields on the sphere', Journal of the American Statistical Association 113, 1625–1636.
- Gneiting, T., Kleiber, W. & Schlather, M. (2010), 'Matérn cross-covariance functions for multivariate random fields', Journal of the American Statistical Association 105(491), 1167–1177.
- Jun, M. (2011), 'Non-stationary cross-covariance models for multivariate processes on a globe', Scandinavian Journal of Statistics 38(4), 726–747.
- Jun, M. (2014), 'Matérn-based nonstationary cross-covariance models for global processes', Journal of Multivariate Analysis 128, 134–146.
- Marinucci, D. & Peccati, G. (2011), Random Fields on the Sphere: Representation, Limit Theorems and Cosmological Applications, Vol. 389 of London Mathematical Society Lecture Note Series, Cambridge University Press.

# Thank You!

# atykim@ucdavis.edu

Amy Kim (UC Davis)

Modeling VRF on **S**<sup>2</sup>

October 5, 2019 32 / 32

< A >

ELE NOR

#### Inner Product

 Given two complex-valued functions f, g, define their inner product to be

$$\langle f,g\rangle = \int_{\mathbb{S}^2} fg^* d\mu$$

where  $g^*$  is conjugate of g

• Given two tangential vector fields  $\mathbf{u}, \mathbf{v}$ , define their inner product to be

$$\langle \mathbf{u}, \mathbf{v} 
angle = \int_{\mathbb{S}^2} u^{ heta} v^{ heta^*} + u^{\phi} v^{\phi^*} d\mu$$

where  $\mathbf{v} = v^ heta \hat{oldsymbol{ heta}} + v^\phi \hat{oldsymbol{\phi}}$ 

where  $d\mu = \sin\theta d\theta d\phi$ .

#### Scalar Spherical Harmonics

For every integer l = 0, 1, 2, ..., and every m = -l, ..., l, the complex **Scalar spherical harmonic function**  $Y_{l,m}$  at  $(\theta, \phi)$ ,  $0 \le \theta \le \pi, 0 \le \phi < 2\pi$  is

$$\begin{aligned} Y_{l,m}(\theta,\phi) &= \sqrt{\frac{2l+1}{4\pi} \frac{(l-m)!}{(l+m)!}} P_{l,m}(\cos\theta) \exp(im\phi), \qquad m \ge 0\\ Y_{l,m}(\theta,\phi) &= (-1)^m Y_{l,-m}^*(\theta,\phi), \qquad m < 0 \end{aligned}$$

where  $\{P_{l,m}\}$  denotes the associated Legendre function.

#### Some properties of SSH

- Orthogonal system of functions on a surface sphere S<sup>2</sup>: The spherical harmonics define a complete basis over the sphere.
- Basis functions in  $L^2(\mathbb{S}^2)$  with the properties
  - Normalized:  $||Y_{l,m}|| = 1$
  - Orthogonal:  $\langle Y_{l,m}, Y_{l',m'} \rangle = \int_0^\pi \int_0^{2\pi} Y_{l,m} Y_{l',m'}^* \sin \theta d\phi d\theta = \delta_{ll'} \delta_{mm'}$
  - Completeness: Any function h in L<sup>2</sup>(S<sup>2</sup>) can be written a linear combination of Y<sub>1,m</sub>:
    - $$\begin{split} h(\theta,\phi) &= \sum_{l=0}^{\infty} \sum_{m=-l}^{l} f_{l,m} Y_{l,m}(\theta,\phi), \\ \text{where } f_{l,m} &= \langle h, Y_{l,m} \rangle \text{ note that } f_{l,-m} = (-1)^m f_{l,m}^* \end{split}$$

◆母 ▶ ▲ ∃ ▶ ▲ ∃ ▶ ∃ 目 ■ の Q @

#### VSH: Properties

- For  $\{\mathbf{Y}_{l,m}, \mathbf{B}_{l,m}, \mathbf{C}_{l,m}\}$ ,
  - Parity:  $\mathbf{Y}_{l,-m} = (-1)^m \mathbf{Y}_{l,m}^*, \mathbf{B}_{l,-m} = (-1)^m \mathbf{B}_{l,m}^*, \mathbf{C}_{l,-m} = (-1)^m \mathbf{C}_{l,m}^*$
  - Orthogonality:
    - $\mathbf{Y}_{l,m} \cdot \mathbf{B}_{l,m} = 0, \mathbf{Y}_{l,m} \cdot \mathbf{C}_{l,m} = 0, \mathbf{B}_{l,m} \cdot \mathbf{C}_{l,m} = 0$ •  $\langle \mathbf{Y}_{l,m}, \mathbf{Y}_{l',m'} \rangle = \delta_{ll'} \delta_{mm'}, \langle \mathbf{B}_{l,m}, \mathbf{B}_{l',m'} \rangle = \delta_{ll'} \delta_{mm'}, \langle \mathbf{C}_{l,m}, \mathbf{C}_{l',m'} \rangle = \delta_{ll'} \delta_{mm'}$
  - A complete orthogonal basis (spherical coordinate vector basis) on S<sup>2</sup>, any vector field v on S<sup>2</sup> can be decomposed as

$$\mathbf{v}(\mathbf{r},\theta,\phi) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \left( f_{l,m}^{r} \mathbf{Y}_{l,m} + f_{l,m}^{B} \mathbf{B}_{l,m} + f_{l,m}^{C} \mathbf{C}_{l,m} \right)$$

where  $f_{l,m}^{r} = \langle \mathbf{v}, \mathbf{Y}_{l,m} \rangle$ ,  $f_{l,m}^{\mathcal{B}} = \langle \mathbf{v}, \mathbf{B}_{l,m} \rangle$ ,  $f_{l,m}^{\mathcal{C}} = \langle \mathbf{v}, \mathbf{C}_{l,m} \rangle$ 

#### Complex Gaussian Random Variables

$$f_{l,m}^B \sim CN(0, \sigma_{B,l}^2), f_{l,m}^C \sim CN(0, \sigma_{C,l}^2)$$
:

$$\begin{cases} \Re(f_{lm}^B) \sim \mathcal{N}(0, \frac{1}{2}\sigma_{B,l}^2) \\ \Re(f_{lm}^B) \sim \mathcal{N}(0, \frac{1}$$

$$\begin{cases} \Re(f_{lm}^B) \sim N(0, \sigma_{B,l}^2) \\ \Re(f_{l,m}^B) = (-1)^{|m|} \Re(f_{l,-m}^B^*) \end{cases} \begin{cases} \Im(f_{lm}^B) = 0 & m = 0 \\ \Im(f_{l,m}^B) = (-1)^{|m|+1} \Im(f_{l,-m}^B^*) & m < 0 \end{cases}$$

where 
$$f_{l,m} = \Re(f_{l,m}) + i\Im(f_{l,m})$$
.

- The coefficients are independent across I
- For the fixed I,  $\Re(f_{l,m}^B)$ ,  $\Re(f_{l,m}^C)$ ,  $\Im(f_{l,m}^B)$ ,  $\Im(f_{l,m}^C)$  are independent identically distributed across m.

• 
$$\sigma_{B,I}^2 = I^{-\alpha_B} \sigma_B^2$$
,  $\sigma_{C,I}^2 = I^{-\alpha_C} \sigma_C^2$ 

#### Log-Likelihood

A tangential vector random fields  $\mathbf{y}_t = (y_t(s_1), y_t(s_2), \cdots, y_t(s_{n_t}))$  at locations  $s_i$ ,  $i = 1, \cdots, n_t$ , and time t,  $t = 1, \cdots, k$  $\mathbf{y}_t \sim N(\mathbf{0}, V_t(\theta))$  where  $\theta = [\sigma_B^2, \sigma_C^2, \tau^2]$ . The log-likelihood is

$$\ell(\boldsymbol{\theta}) = -\frac{\sum_{t=1}^{k} n_t}{2} \log(2\pi) - \frac{1}{2} \sum_{t=1}^{k} \left[ \log(|V_t(\boldsymbol{\theta})|) + (\mathbf{y}_t^T V_t(\boldsymbol{\theta})^{-1} \mathbf{y}_t) \right]$$
(6)

where  $V_t(\theta) = \mathbf{Z}_t G \mathbf{Z}_t^T + \tau^2 I_{2n_t}$