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Introduction

Motivation

Prediction and modeling fluctuations in multivariate processes

Interested in vector random fields on a sphere

Unified framework for modeling both mean and residual fields

Producing a meaningful decomposition of vector fields on a sphere

Figure: Wind Map 1, Ocean Current 2, Geomagnetic Field 3

1
https://www.theregister.co.uk/

2
NASA

3
https://www.sciencealert.com/
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Introduction

Helmholtz-Hodge Decomposition

Any vector field v can be decomposed as

v = vcurl-free + vdiv-free + vharmonic (1)

where vcurl-free is a curl free, vdiv-free is a divergence free, and vharmonic is
both divergence-free and curl-free and is the gradient of a harmonic
functions.

Figure: Decomposition of Vector Field 4

4
https://images.app.goo.gl/Yv79h7N2SeeYJVi96
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Introduction

Models for Multivariate Random Fields

Vector Random fields can be treated as multivariate processes.

Multivariate Matérn Model (Gneiting et al. (2010), Apanasovich et al.
(2012))

Multivariate Random Fields on globe (Jun (2014), Jun (2011))

Tangent Matérn Model (Fan et al. (2018))
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Introduction

Our Approach

Modeling vector random field on a sphere:

Vector Spherical Harmonics: basis functions for vector fields defined
on sphere, S2, where S2 = {x ∈ R3 : ‖x‖ = 1}
Model mean and error fields simultaneously (Linear mixed effect
model approach)

Produce physically meaningful vector fields
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Vector Spherical Harmonics
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Vector Spherical Harmonics Properties of Spherical Harmonics

Spherical Coordinate System

Figure: Spherical Coordinate System

Amy Kim (UC Davis) Modeling VRF on S2 October 5, 2019 9 / 32



Vector Spherical Harmonics Properties of Spherical Harmonics

Scalar Spherical Harmonics

For every integer l = 0, 1, 2, . . . , and every m = −l , . . . , l , the complex
Scalar spherical harmonic function Yl ,m(θ, φ)

Eigenfunctions of the
Laplacian on S2

Orthonormal basis of
L2(S2)

Visual Presentation of SSH5

5
By Inigo.quilez - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=32782753
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Vector Spherical Harmonics Properties of Spherical Harmonics

Vector Spherical Harmonics

Given a scalar spherical harmonics Yl ,m(θ, φ), define complex Vector
Spherical Harmonics {Yl ,m,Bl ,m,Cl ,m}:

Yl ,m = Yl ,m r̂

Bl ,m = 1√
l(l+1)

∇Yl ,m

Cl ,m = −r̂ × 1√
l(l+1)

∇Yl ,m = −r̂ × Bl ,m

Curl{Bl ,m} = ∇× Bl ,m = 0, Div{Cl ,m} = ∇ · Cl ,m = 0
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Vector Spherical Harmonics Properties of Spherical Harmonics

VSH: Tangential Vector Random field modeling

Decomposition tangential vector fields on S2:

v =
∑

1≤l ,|m|≤l

[
f Bl ,mBl ,m + f Cl ,mCl ,m

]
(2)

=
∑

1≤l ,|m|≤l

f Bl ,mBl ,m︸ ︷︷ ︸
Curl-Free

+
∑

1≤l ,|m|≤l

f Cl ,mCl ,m︸ ︷︷ ︸
Divergence-Free

Curl{Bl ,m} = ∇× Bl ,m = 0, Div{Cl ,m} = ∇ · Cl ,m = 0
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Modeling Vector Random Fields on Sphere Tangential Vector Random Field Modeling

SSH: Gaussian Random Fields

The Spectral representation of isotropic fields on S2(Marinucci & Peccati
(2011))

A Gaussian isotropic random field h(θ, φ) on (θ, φ) ∈ S2, with∑
l

∑
m E‖h2(θ, φ)‖ <∞, can be defined as

h(θ, φ) =
∞∑
l=0

l∑
m=−l

fl ,mYl ,m(θ, φ)

where fl ,m are Gaussian random variables, independent across l .
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Modeling Vector Random Fields on Sphere Proposed Model

Tangential Vector Random Field Model on a Sphere

A Gaussian tangential vector random field on a sphere, {y(s) : s ∈ S2},
can be constructed of

y(s) =
L∑

l=1

l∑
m=−l

[
f Bl ,mBl ,m(s) + f Cl ,mCl ,m(s)

]
+ εs (3)

where

L: the maximum order of vector spherical harmonics

f Bl ,m, f
C
l ,m: random complex coefficients (conjugacy relationship m,−m)

y(s) ∈ R
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Modeling Vector Random Fields on Sphere Proposed Model

Assumptions of TVRF on a Sphere

f Bl ,m ∼ CN(0, σ2
B,l), f

C
l ,m ∼ CN(0, σ2

C ,l)

Independence between {f Bl,m}, {f Cl,m}
The coefficients are independent across l
For the fixed l , the coefficients are independent identically distributed
across m subject to conjugacy
σ2
B,l = l−αBσ2

B , σ
2
C ,l = l−αCσ2

C , and αB , αC > 0

εs ∼ N(0, τ2), independent across observed locations (s)

y(s) has Gaussian distribution.
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Modeling Vector Random Fields on Sphere Proposed Model

Matrix Form

The observed TVRF y = [yθ(si )1≤i≤n, y
φ(si )1≤i≤n]T is

y = Zf + ε (4)

where y(si ) = yθ(si )θ̂ + yφ(si )φ̂, and

y, ε: length 2n vectors

Z: 2n × p matrix of VSH

f is a p × 1 vector of random VSH coefficients

p = 2(L2 + 2L) + 2(L2 + L)

Then y ∼ N(0,V ) where V = ZGZT + τ2I2n
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Modeling Vector Random Fields on Sphere Connect to Natural Constraints

VSH: Simulated Field

Let v be a tangential vector field on a bounded domain in S2, then it can
be expressed as a sum of a curl-free and a divergence-free vector fields:

+ =

Figure: Simulated Tangential Vector Field on S2: σ2
B = 20, σ2

C = 10
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Modeling Vector Random Fields on Sphere Simulation Study

Simulations

Estimation results 500 data sets on 20× 20 equiangular grid

Figure: LTrue = 9, σ2
B = 20, σ2

C = 10, τ 2 = 0.01 with known αB = αC = 2.

Amy Kim (UC Davis) Modeling VRF on S2 October 5, 2019 19 / 32



Application to Geomagnetic Field
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Application to Geomagnetic Field Earth’s Magnetic Fields

Geomagnetic Field

Earth’s magnetic field: B

B = −∇V (Ampere’s Law,
Maxwell’s equation)

Curl-free field

Satellites Data: Magsat, Ørsted,
CHAMP, Swarm
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Application to Geomagnetic Field Earth’s Magnetic Fields

Ørsted Satellites

Data collected from Feb 1999

High precision mapping the Earth’s
magnetic fields

Attitude error - anisotropic
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Application to Geomagnetic Field Results of the Modeling on Geomagnetic Field

Proposed Model: Geomagnetic Field

Let Y(s, t) be the tangential geomagnetic field at location s and time t.
Then,

Y(s, t) = µ(s, t) + ϕ(θ, t)y(s) (5)

where µ(s, t) is non-random time varying trend, ϕ(θ, t)y(s, t) is random
stochastic fluctuation.

µ(s, t) =
∑Lµ

l=1

∑
m{gB

l ,m(t)Bl ,m(s) + gC
l ,m(t)Cl ,m(s)}

{gB
l,m(t)}, {gC

l,m(t)} are represented in spline basis

ϕ(θ, t): axially symmetric scaling function

y(s, t) =
∑LR

l=1

∑
m

[
f Bl ,m(t)Bl ,m(s) + f Cl ,m(t)Cl ,m(s)

]
+ ε(s, t)

{f Bl,m(t)}, {f Cl,m(t)} are independent across t
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Application to Geomagnetic Field Results of the Modeling on Geomagnetic Field

Proposed Model: Geomagnetic Field

ϕx(θ, t) =
√∫
‖µx(θ, φ, t)‖2dφ where x = θ, φ.

Figure: Bφ(first row) vs. φ and Bθ(second row) vs. φ on three different trajectory groups(each

columns).
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Application to Geomagnetic Field Results of the Modeling on Geomagnetic Field

Results and Comparison to other methods

Comparing our fitted model (VRF):∑15
t=1 nt = 24601

J = 5, LR = 19

Optimization: σ̂2
B = 0.4846, σ̂2

C = 0.02076, τ̂2 = 0.002429

AIC: L̂µ = 3, α̂B = 3, α̂C = 2

With

Random Forest (RF)

Generalized Boosted Regression model (GBM)

Linear Regression with Vector Spherical Harmonics Lµ = 3 with
considering time (VSH)
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Application to Geomagnetic Field Results of the Modeling on Geomagnetic Field

Results and Comparison to other methods

Figure: Fitted vs. Residual Plots

RF GBM VSH VRF

rmse 1200.1718 351.1564 920.4255 286.5607
prmse 1189.4378 392.3918 920.0997 379.1270

Table: Comparison of squared-root mean squared error (rmse:
sqrt(mean(residuals2))) and predicted squared-root squared error(prmse:
dataset not used for estimating parameters.) of each four models

Amy Kim (UC Davis) Modeling VRF on S2 October 5, 2019 26 / 32



Application to Geomagnetic Field Results of the Modeling on Geomagnetic Field

Vector Field Plot

Figure: Geomagnetic field plot at the first time period
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Application to Geomagnetic Field Results of the Modeling on Geomagnetic Field

Vector Field Plot

Figure: Different scale: Clm field is enlarged 3 times scale
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Conclusion

Final Remarks

Parametric model for tangential vector random fields on the surface
of sphere through a vector spherical harmonics representation.

The vector random field models(random effects) can be estimated by
maximum likelihood, BLUP.

Natural decomposition of the vector field

Future Works

Improve computational efficiency to handle large amount of data

Extension the model to incorporate radial component to deal with
data on spherical shell (different r).
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Conclusion
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Conclusion

Thank You!

atykim@ucdavis.edu
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Inner Product

Given two complex-valued functions f , g , define their inner product to
be

〈f , g〉 =

∫
S2

fg∗dµ

where g∗ is conjugate of g

Given two tangential vector fields u, v, define their inner product to be

〈u, v〉 =

∫
S2

uθvθ
∗

+ uφvφ
∗
dµ

where v = vθθ̂ + vφφ̂

where dµ = sin θdθdφ.
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Scalar Spherical Harmonics

For every integer l = 0, 1, 2, . . . , and every m = −l , . . . , l , the complex
Scalar spherical harmonic function Yl ,m at (θ, φ),
0 ≤ θ ≤ π, 0 ≤ φ < 2π is

Yl ,m(θ, φ) =

√
2l + 1

4π

(l −m)!

(l + m)!
Pl ,m(cos θ) exp(imφ), m ≥ 0

Yl ,m(θ, φ) = (−1)mY ∗l ,−m(θ, φ), m < 0

where {Pl ,m} denotes the associated Legendre function.
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Some properties of SSH

Orthogonal system of functions on a surface sphere S2: The spherical
harmonics define a complete basis over the sphere.

Basis functions in L2(S2) with the properties

Normalized: ‖Yl,m‖ = 1

Orthogonal: 〈Yl,m,Yl′,m′〉 =
∫ π

0

∫ 2π

0
Yl,mY

∗
l′,m′ sin θdφdθ = δll′δmm′

Completeness: Any function h in L2(S2) can be written a linear
combination of Yl,m:

h(θ, φ) =
∑∞

l=0

∑l
m=−l fl,mYl,m(θ, φ),

where fl,m = 〈h,Yl,m〉 note that fl,−m = (−1)mf ∗l,m
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VSH: Properties

For {Yl ,m,Bl ,m,Cl ,m},
Parity: Yl ,−m = (−1)mY∗l ,m,Bl ,−m = (−1)mB∗l ,m,Cl ,−m = (−1)mC∗l ,m
Orthogonality:

Yl,m · Bl,m = 0,Yl,m · Cl,m = 0,Bl,m · Cl,m = 0
〈Yl,m,Yl′,m′〉 = δll′δmm′ , 〈Bl,m,Bl′,m′〉 = δll′δmm′ , 〈Cl,m,Cl′,m′〉 =
δll′δmm′

A complete orthogonal basis (spherical coordinate vector basis) on S2,
any vector field v on S2 can be decomposed as

v(r , θ, φ) =
∞∑
l=0

l∑
m=−l

(
f rl ,mYl ,m + f Bl ,mBl ,m + f Cl ,mCl ,m

)
where f rl ,m = 〈v,Yl ,m〉 , f Bl ,m = 〈v,Bl ,m〉 , f Cl ,m = 〈v,Cl ,m〉
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Complex Gaussian Random Variables

f Bl ,m ∼ CN(0, σ2
B,l), f

C
l ,m ∼ CN(0, σ2

C ,l) :
<(f Blm) ∼ N(0, 1

2σ
2
B,l)

<(f Blm) ∼ N(0, σ2
B,l)

<(f Bl ,m) = (−1)|m|<(f Bl ,−m
∗
)


=(f Blm) ∼ N(0, 1

2σ
2
B,l) m > 0

=(f Blm) = 0 m = 0

=(f Bl ,m) = (−1)|m|+1=(f Bl ,−m
∗
) m < 0

where fl ,m = <(fl ,m) + i=(fl ,m).

The coefficients are independent across l

For the fixed l , <(f Bl ,m),<(f Cl ,m), =(f Bl ,m),=(f Cl ,m) are independent
identically distributed across m.

σ2
B,l = l−αBσ2

B , σ
2
C ,l = l−αCσ2

C
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Log-Likelihood

A tangential vector random fields yt =
(
yt(s1), yt(s2), · · · , yt(snt )

)
at

locations si , i = 1, · · · , nt , and time t, t = 1, · · · , k
yt ∼ N(0,Vt(θ)) where θ = [σ2

B , σ
2
C , τ

2].
The log-likelihood is

`(θ) = −
∑k

t=1 nt
2

log(2π)− 1

2

k∑
t=1

[
log(|Vt(θ)|) + (yTt Vt(θ)−1yt)

]
(6)

where Vt(θ) = ZtGZt
T + τ2I2nt
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