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Fig. 1. Probability of death varies with passenger class.
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Fig. 2. Probability of death stratified by passenger
class, age, and sex.
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How to model the association between
death and passenger class?
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• Binary outcome

• Categorical or continuous treatment

• Covariates

Setting

Problem Description
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Z 2 Z
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Problem:
• Quantify the association between and , and how that varies withZ Y V



• Odds Ratio (OR):

Measures of Association for Treatment
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or(z0, z; v) =
pr(Y = 1 | Z = z, V = v)/pr(Y = 0 | Z = z, V = v)

pr(Y = 1 | Z = z0, V = v)/pr(Y = 0 | Z = z0, V = v)



• Odds Ratio (OR):

• Relative Risk (RR):

Measures of Association for Treatment

13

or(z0, z; v) =
pr(Y = 1 | Z = z, V = v)/pr(Y = 0 | Z = z, V = v)

pr(Y = 1 | Z = z0, V = v)/pr(Y = 0 | Z = z0, V = v)

rr(z0, z; v) =
pr(Y = 1 | Z = z, V = v)

pr(Y = 1 | Z = z0, V = v)



Generalized Linear Models (GLMs) for
Binary outcome

14

Measures GLMs
Odds Ratio Logistic Regression

Relative Risk Poisson Regression



• Interpretation: not intuitive; scientists rarely ask for them (Lumley et 
al., 2006).

Problems of Odds Ratio

Why not Odds Ratio?
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Lack of Collapsibility

Population Female Male

Treated Untreated Treated Untreated Treated Untreated

Disease 11038 38988 9948 38388 1090 600

No 
disease 8962 41012 52 1612 8910 39400

Odds 
ratios 1.29 8.03 8.03
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Tab. 1. Odds ratio of synthetic randomized trial.
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Lack of Collapsibility

1.29 < 8.03
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Tab. 1. Odds ratio of synthetic randomized trial.

Population Female Male

Treated Untreated Treated Untreated Treated Untreated

Disease 11038 38988 9948 38388 1090 600

No 
disease 8962 41012 52 1612 8910 39400

Odds 
ratios 1.29 8.03 8.03
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• Interpretation: not intuitive; scientists rarely ask for them (Lumley et 
al., 2006).

Problems of Odds Ratio

Measures of Association for Treatment

• Lack of collapsibility: the marginal odds ratio will not lie in the 
convex hull of stratum-specific odds ratios (Greenland et al., 1999).
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Relative Risk is Collapsible
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Relative Risk is Collapsible
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Generalized Linear Models (GLMs) for
Binary outcome

26

Measures GLMs
Odds Ratio Logistic Regression

Relative Risk Poisson Regression



• Poisson Regression�

Generalized Linear Model (GLM)

Relative Risk Modeling

log{pr(Y = 1|Z, V )} = Z↵TV + �TV
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28

Z 2 {0, 1}



• Poisson Regression�

Generalized Linear Model (GLM)

Relative Risk Modeling

log{pr(Y = 1|Z, V )} = Z↵TV + �TV

log{rr(0, 1;V )} = ↵TV

log{pr(Y = 1 | Z = 0, V )} = �TV

Equivalently, for binary treatment

29

Z 2 {0, 1}



Variation Dependence

Problems of Poisson Regression

log{rr(0, 1;V )} = ↵TV

log{pr(Y = 1 | Z = 0, V )} = �TV
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Variation Dependence

Problems of Poisson Regression

log{pr(Y = 1 | Z = 0, V )}

log{rr(0, 1;V )}

log{rr(0, 1;V )} = ↵TV

log{pr(Y = 1 | Z = 0, V )} = �TV
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Variation Dependence

Problems of Poisson Regression

log{pr(Y = 1 | Z = 0, V )}

log{rr(0, 1;V )}
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log{pr(Y = 1 | Z = 0, V )} = �TV
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Variation Dependence

Problems of Poisson Regression

log{pr(Y = 1 | Z = 0, V )}

log{rr(0, 1;V )}

log{rr(0, 1;V )} = ↵TV

log{pr(Y = 1 | Z = 0, V )} = �TV
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Variation Dependence

Problems of Poisson Regression
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Prediction

Problems of Poisson Regression
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Fig. 5. Predictions after fitted with Poisson regression
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GLM Dilemma
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Richardson et al. (2017), binary treatment,

Relative Risks Modeling

log{rr(0, 1;V )} = ↵TV

log{pr(Y = 1 | Z = 0, V )} = �TV

Z 2 {0, 1}
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Richardson et al. (2017), binary treatment,

Relative Risks Modeling
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Richardson et al. (2017), binary treatment,

Relative Risks Modeling

log{rr(0, 1;V )} = ↵TV

log{pr(Y = 1 | Z = 0, V )} = �TVlog{op(0, 1;V )} = �TV

Define odds product (OP) as:

where

op(z0, z; v) =
p0(v)pz(v)

{1� p0(v)}{1� pz(v)}
,

pr(Y = 1 | Z = z, V = v) = pz(v)

Z 2 {0, 1}
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Why Odds Product?

rr(0, 1; v) =
p1(v)

p0(v)
op(0, 1; v) =

p0(v)p1(v)

{1� p0(v)}{1� p1(v)}
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Fig. 4. Lines of constant odds product

Variation Independence!



Relative Risks Modeling

log{rr(0, 1;V )} = ↵TV

log{pr(Y = 1 | Z = 0, V )} = �TVlog{op(0, 1;V )} = �TV

Richardson et al. (2017), binary treatment, Z 2 {0, 1}
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Relative Risks Modeling
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Our Methods for
Modeling Relative Risks

Richardson et al. (2017), binary treatment, Z 2 {0, 1}
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Our Methods for
Modeling Relative Risks

Richardson et al. (2017), binary treatment, Z 2 {0, 1}Continuous or categorical treatments Z 2 Z
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• Goal: find so that for any     , the mapping given by

is a diffeomorphism between the interior of their domains. 

Our Methods for
Modeling Relative Risks

Richardson et al. (2017), binary treatment, Z 2 {0, 1}Continuous or categorical treatments Z 2 Z

�(v) v

(log{rr(z0, z; v)}, z 2 Z;�(v)) ! (pz(v), z 2 Z)
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Examples

Method 1: Monotonic Treatment
Effects

48
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Examples

Method 1: Monotonic Treatment
Effects
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Recovery
Probability

Income HappinessDosage

is monotonic in    for all   rr(z0, z; v) z v



• Assumption: is monotonic and bounded in ,

Method 1: Variation Independence with 
Monotonic Treatment Effects

rr(z0, z; v)

pz(v) = pr(Y = 1 | Z = z, V = v)

rr(z0, z; v) =
pr(Y = 1 | V = v, Z = z)

pr(Y = 1 | V = v, Z = z0)

op(z0, z; v) =
p0(v)pz(v)

{1� p0(v)}{1� pz(v)}

50

z 2 (0, 1)z



• Assumption: is monotonic and bounded in ,

Method 1: Variation Independence with 
Monotonic Treatment Effects

rr(z0, z; v)

pz(v) = pr(Y = 1 | Z = z, V = v)

rr(z0, z; v) =
pr(Y = 1 | V = v, Z = z)

pr(Y = 1 | V = v, Z = z0)

op(z0, z; v) =
p0(v)pz(v)

{1� p0(v)}{1� pz(v)}

51

is a diffeomorphism.

z 2 (0, 1)z

log{op(0, 1; v)}

log{rr(z0, z, ; v)}, z 2 (0, 1);
pz(v), z 2 (0, 1)



Method 1: Variation Independence 
with Monotonic Treatment Effects

Remark 1 The boundedness condition on h(v, z) guarantees that the implied
probabilities pz(v) are bounded away from 0.

Theorem 1 Let Z ✓ R and V be the support of Z and V , respectively. Let
h(z, v) and g(v) be real-valued functions with support Z⇥V and V, respectively.
If h(z, v) is bounded and monotonic in z, then there exists a unique set of proper
probability distributions {pz(v); z 2 Z, v 2 V} such that log{rr(z0, z; v)} =
h(z, v) and log{op(zinf , zsup; v)} = g(v), where zinf = inf{z : z 2 Z}, zsup =
sup{z : z 2 Z} and

op(zinf , zsup; v) = lim
z1!zinf

lim
z2!zsup

pz1(v)pz2(v)

(1� pz1(v))(1� pz2(v))
.
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Why the assumption matters…

Method 1: Variation Independence with 
Monotonic Treatment Effects

pz(v) = pr(Y = 1 | Z = z, V = v)

rr(z0, z; v) =
pr(Y = 1 | V = v, Z = z)

pr(Y = 1 | V = v, Z = z0)

op(z0, z; v) =
p0(v)pz(v)

{1� p0(v)}{1� pz(v)}
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z 2 (0, 1)



Why the assumption matters…

Method 1: Variation Independence with 
Monotonic Treatment Effects

pz(v) = pr(Y = 1 | Z = z, V = v)

rr(z0, z; v) =
pr(Y = 1 | V = v, Z = z)

pr(Y = 1 | V = v, Z = z0)

op(z0, z; v) =
p0(v)pz(v)

{1� p0(v)}{1� pz(v)}
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log{op(0, 1; v)}

log{rr(0, 1; v)}

z 2 (0, 1)



Why the assumption matters…

Method 1: Variation Independence with 
Monotonic Treatment Effects

pz(v) = pr(Y = 1 | Z = z, V = v)

rr(z0, z; v) =
pr(Y = 1 | V = v, Z = z)

pr(Y = 1 | V = v, Z = z0)

op(z0, z; v) =
p0(v)pz(v)

{1� p0(v)}{1� pz(v)}
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log{op(0, 1; v)}

log{rr(0, 1; v)}

p0(v)

p1(v)

0 < p0(v), p1(v) < 1
Richardson et al. (2017):

z 2 (0, 1)



• Assumption: is monotonic in ,

equivalently,               is  monotonic in

Why the assumption matters…

Method 1: Variation Independence with 
Monotonic Treatment Effects

rr(z0, z; v)

pz(v)

pz(v) = pr(Y = 1 | Z = z, V = v)

rr(z0, z; v) =
pr(Y = 1 | V = v, Z = z)

pr(Y = 1 | V = v, Z = z0)

op(z0, z; v) =
p0(v)pz(v)

{1� p0(v)}{1� pz(v)}
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z 2 (0, 1)

0 < min{p0(v), p1(v)}  pz(v)  max{p0(v), p1(v)} < 1 z 2 (0, 1)

z

z

0 < p0(v), p1(v) < 1



• Assumption: is monotonic in ,

equivalently,               is  monotonic in

Why the assumption matters…

Method 1: Variation Independence with 
Monotonic Treatment Effects

rr(z0, z; v)

pz(v)

pz(v) = pr(Y = 1 | Z = z, V = v)

rr(z0, z; v) =
pr(Y = 1 | V = v, Z = z)

pr(Y = 1 | V = v, Z = z0)

op(z0, z; v) =
p0(v)pz(v)

{1� p0(v)}{1� pz(v)}
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z 2 (0, 1)

0 < min{p0(v), p1(v)}  pz(v)  max{p0(v), p1(v)} < 1 z 2 (0, 1)

z

z

0 < p0(v), p1(v) < 1

Proper probabilities!



Consider bounded treatment

Method 1: Parameterization with 
Monotonic Treatment Effects

58

z 2 [0, 1]

log{rr(0, z;V, �)} = �TV g(z) z 2 [0, 1]

log{op(0, 1;V,�)} = �TV,

where is a monotone function ofg(z) z



Log-likelihood for a unit�

Method 1: Parameterization with 
Monotonic Treatment Effects

l(�,�|zi, vi, yi) = yi log{pzi(vi; �,�)}+ (1� yi) log{1� pzi(vi; �,�)}

59

Inference on and can be obtained in standard fashion� �



Model 1: Simulation

Data simulation:

log{rr(0, z;V, �)} = �TV z z 2 {0, 1, 2},
log{op(0, 2;V,�)} = �TV.

60

• Z ⇠ unif{0, 1, 2}

• V = (1, V1)T, V1 ⇠ unif[�2, 2]

• � = (0, 1)T, � = (�0.5, 1)T



Model 1: Simulation Results

Sample Size 100 500 1000
Bias(SE)

�0 0.002(0.022) �0.001(0.004) 0.000(0.002)
�1 0.090(0.025) 0.013(0.004) 0.006(0.002)

SD Accuracy
�0 1.022 1.040 0.994
�1 1.109 1.032 1.018

Coverage
�0 0.950 0.949 0.948
�1 0.949 0.950 0.958

Table 1. Monte Carlo simulation results based on 1000 runs for the 
proposed estimator which assumes monotonic treatment effects. 

SE, standard error.
SD Accuracy = estimated standard deviation / Monte Carlo standard deviation.
Nominal level = 95%.
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Nominal level = 95%.
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Model 1: Simulation Results

Sample Size 100 500 1000
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Nominal level = 95%.
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� = (0, 1)T



The Model 1 cannot be applied if the 
relative risk is not monotonic in .z
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• Recall the Goal: find so that for any , the mapping given by

is a diffeomorphism between the interior of their domains. 

Z 2 {z0, . . . , zK}, K � 2

Model 2: Categorical Treatment

pk(v) = pr(Y = 1 | Z = zk, V = v)

rr(0, k; v) =
pk(v)

p0(v)

�(v) v

(log{rr(0, k; v)}, k 2 {1, . . . ,K};�(v)) ! (p0(v), . . . , pK(v))
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Generalized Odds Product (GOP)

e.g. For a categorical treatment

gop(v) =
p0(v)

1� p0(v)
· p1(v)

1� p1(v)
· p2(v)

1� p2(v)

Z 2 {z0, z1, z2}



gop(v) =
KY

k=0

pk(v)

1� pk(v)
.

Model 2: Variation Independence with 
A Categorical Treatment

Generalized odds product
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gop(v) =
KY

k=0

pk(v)

1� pk(v)
.

Model 2: Variation Independence with 
A Categorical Treatment

Generalized odds product
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Theorem 1

Theorem 2 (Variation independence with a categorical treatment) Let
M denote a (K + 1)-dimensional model on

rr(0, k; v) =
pk(v)

p0(v)
(k = 1, . . . ,K),

gop(v) =
KY

k=0

pk(v)

1� pk(v)
.

For any v, the map given by

(p0(v), . . . , pK(v)) ! (log rr(0, 1; v), . . . , logrr(0,K; v), loggop(v)) (1)

is a di↵eomorphism from (0, 1)K+1 to (R)K+1. Furthermore, the models in M
are variation independent of each other.



Model 2�Parameterization With a 
Categorical Treatment

Z 2 {z0, . . . , zK}, K � 2

log{rr(v; 0, k)} = ↵T
kX (k = 1, . . . ,K),

log{gop(v)} = �TW,

where

pk(v) = pr(Y = 1 | Z = zk, V = v)

rr(0, k; v) =
pk(v)

p0(v)

gop(v) =
KY

k=0

pk(v)

1� pk(v)

X = X(v), W = W (v)

70



Model 2: Simulation Results

Sample Size 100 500 1000
↵1 ↵2 ↵1 ↵2 ↵1 ↵2

Bias(SE)
�0.069(0.056) 0.038(0.033) �0.016(0.009) 0.002(0.006) �0.002(0.004) 0.004(0.003)
0.078(0.055) 0.162(0.045) 0.011(0.009) 0.023(0.007) 0.009(0.004) 0.013(0.004)

SD Accuracy
1.307 1.019 0.993 1.000 1.036 1.014
1.421 1.023 1.037 1.037 1.033 1.033

Coverage
0.975 0.954 0.951 0.948 0.964 0.957
0.973 0.972 0.956 0.961 0.956 0.955

Table 2. Monte Carlo simulation results based on 1000 runs for the relative risk model 
with a generalized odds product nuisance model. 

SE, standard error.
SD Accuracy = estimated standard deviation / Monte Carlo standard deviation.
Nominal level = 95%.

71
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How to model the association between
death and passenger class?
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Application: Titanic Data
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Fig. 1. Probability of death varies with passenger class.
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Application: Titanic Data

Fig. 5. Passengers' survival statuses by passenger class, age, 
and sex.

N=284 (27.1%) N=261 (25.0%) N=501 (47.9%)
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Four Models Estimating the Variation
in the Relative Risk of Death
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Model
Model 1: Monotone

Poisson model
Model 2: GOP
Logistic Model

• Binary outcome: Death=1, survival = 0
• Treatment: Passenger class (1st, 2nd , 3rd; 1st is the baseline)
• Covariates: age, sex, age2, sex*age
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Application: Titanic Data

1st, 2nd, 3rd: the first passenger class, the second passenger class, and the third passenger class.
The first class is chosen as the baseline.

Table 3. Coefficient estimates via different models
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2nd 2nd* 2nd* 2nd* 2nd* 3rd 3rd* 3rd* 3rd* 3rd*

male age/10 age2/ male* male age/10 age2/ male*

100 age/10 100 age/10

Point Estimate

Monotone 1.891 �1.543 �0.165 0.011 0.058 — — — — —

Poisson �1.211 0.938 0.969 �0.072 �0.487 2.232 �1.444 0.120 0.005 �0.254

GOP �1.134 1.439 0.780 �0.033 �0.617 2.204 �1.212 0.053 0.020 �0.309

Standard Deviation

Monotone 0.396 0.407 0.124 0.010 0.107 — — — — —

Poisson 2.077 1.967 0.620 0.033 0.542 1.874 1.739 0.570 0.030 0.482

GOP 1.230 1.251 0.369 0.029 0.314 0.888 0.957 0.260 0.021 0.236



Predicted probability via Monotone

Application: Titanic Data
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Application: Titanic Data
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• Two novel methods to model multiplicative treatment 
effects with a binary outcome. 

• The first method relies on a monotonic treatment 
effect assumption.

• The second one proposes an alternative approach 
that involves a novel generalized odds product model.

Summary
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• Model 1 cannot be applied if the relative risk is not
monotonic in treatment.
• Exploratory data analysis
• Substantive knowledge

• Model 2 is more flexible than Model 1, but has K-
times as many parameters.

Discussion
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Thank you!!!
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