Multiplicative Effect Modeling: The General Case

Jackie (Jiaqi) Yin
October 5th, 2019

Women in Statistics and Data Science 2019

Titanic

Titanic Deaths

Fig. 1. Probability of death varies with passenger class.

Titanic Deaths

Fig. 1. Probability of death varies with passenger class.

Titanic Deaths

Fig. 1. Probability of death varies with passenger class.

Titanic Sinks

Fig. 2. Probability of death stratified by passenger class, age, and sex.

Titanic Sinks

Fig. 2. Probability of death stratified by passenger class, age, and sex.

Titanic Sinks

Fig. 2. Probability of death stratified by passenger class, age, and sex.

How to model the association between death and passenger class?

Problem Description

Setting

- Binary outcome $Y \in\{0,1\}$
- Categorical or continuous treatment $Z \in \mathcal{Z}$
- Covariates $V \in \mathcal{V}$

Problem Description

Setting

- Binary outcome $Y \in\{0,1\}$
- Categorical or continuous treatment $Z \in \mathcal{Z}$
- Covariates $V \in \mathcal{V}$

Problem:

- Quantify the association between Z and Y, and how that varies with V

Measures of Association for Treatment

Odds Ratio (OR):

$$
\mathrm{OR}\left(z_{0}, z ; v\right)=\frac{\operatorname{pr}(Y=1 \mid Z=z, V=v) / \operatorname{pr}(Y=0 \mid Z=z, V=v)}{\operatorname{pr}\left(Y=1 \mid Z=z_{0}, V=v\right) / \operatorname{pr}\left(Y=0 \mid Z=z_{0}, V=v\right)}
$$

Measures of Association for Treatment

Odds Ratio (OR):

$$
\mathrm{OR}\left(z_{0}, z ; v\right)=\frac{\operatorname{pr}(Y=1 \mid Z=z, V=v) / \operatorname{pr}(Y=0 \mid Z=z, V=v)}{\operatorname{pr}\left(Y=1 \mid Z=z_{0}, V=v\right) / \operatorname{pr}\left(Y=0 \mid Z=z_{0}, V=v\right)}
$$

Relative Risk (RR):

$$
\operatorname{RR}\left(z_{0}, z ; v\right)=\frac{\operatorname{pr}(Y=1 \mid Z=z, V=v)}{\operatorname{pr}\left(Y=1 \mid Z=z_{0}, V=v\right)}
$$

Generalized Linear Models (GLMs) for Binary outcome

Measures
Odds Ratio
Relative Risk

GLMs
Logistic Regression
Poisson Regression

Why not Odds Ratio?

Problems of Odds Ratio

- Interpretation: not intuitive; scientists rarely ask for them (Lumley et al., 2006).

Lack of Collapsibility

Tab. 1. Odds ratio of synthetic randomized trial.

	Population	
	Treated	Untreated
Disease	11038	38988
No disease Odds ratios	8962	41012

Lack of Collapsibility

Tab. 1. Odds ratio of synthetic randomized trial.

	Population		Female	
	Treated	Untreated	Treated	Untreated
Disease	11038	38988	9948	38388
No disease	8962	41012	52	1612
Odds ratios	1.29		8.03	

Lack of Collapsibility

Tab. 1. Odds ratio of synthetic randomized trial.

| | Population | | Female | | Male | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Treated | Untreated | Treated | Untreated | Treated | Untreated |
| Disease | 11038 | 38988 | 9948 | 38388 | 1090 | 600 |
| No
 disease | 8962 | 41012 | 52 | 1612 | 8910 | 39400 |

$1.29<8.03$

Lack of Collapsibility

Female

Lack of Collapsibility

Female

Measures of Association for Treatment

Problems of Odds Ratio

- Interpretation: not intuitive; scientists rarely ask for them (Lumley et al., 2006).
- Lack of collapsibility: the marginal odds ratio will not lie in the convex hull of stratum-specific odds ratios (Greenland et al., 1999).

Relative Risk is Collapsible

Fig 3. lines of constant Relative risk

Relative Risk is Collapsible

Fig 3. lines of constant Relative risk

Relative Risk is Collapsible

Fig 3. lines of constant Relative risk

Generalized Linear Models (GLMs) for Binary outcome

Measures

Odds Ratio
Relative Risk

GLMs
Logistic Regression
Poisson Regression

Relative Risk Modeling

Generalized Linear Model (GLM)

- Poisson Regression:

$$
\log \{\operatorname{pr}(Y=1 \mid Z, V)\}=Z \alpha^{\mathrm{T}} V+\beta^{\mathrm{T}} V
$$

Relative Risk Modeling

Generalized Linear Model (GLM)

- Poisson Regression:

$$
\log \{\operatorname{pr}(Y=1 \mid Z, V)\}=Z \alpha^{\mathrm{T}} V+\beta^{\mathrm{T}} V
$$

Equivalently, for binary treatment $Z \in\{0,1\}$

$$
\begin{aligned}
\log \{\mathrm{RR}(0,1 ; V)\} & =\alpha^{\mathrm{T}} V \\
\log \{\operatorname{pr}(Y=1 \mid Z=0, V)\} & =\beta^{\mathrm{T}} V
\end{aligned}
$$

Relative Risk Modeling

Generalized Linear Model (GLM)

- Poisson Regression:

$$
\log \{\operatorname{pr}(Y=1 \mid Z, V)\}=Z \alpha^{\mathrm{T}} V+\beta^{\mathrm{T}} V
$$

Equivalently, for binary treatment $Z \in\{0,1\}$

$$
\begin{aligned}
\log \{\operatorname{RR}(0,1 ; V)\} & =\alpha^{\mathrm{T}} V \\
\log \{\operatorname{pr}(Y=1 \mid Z=0, V)\} & =\beta^{\mathrm{T}} V
\end{aligned}
$$

Problems of Poisson Regression

Variation Dependence

$$
\begin{aligned}
\log \{\operatorname{RR}(0,1 ; V)\} & =\alpha^{\mathrm{T}} V \\
\log \{\operatorname{pr}(Y=1 \mid Z=0, V)\} & =\beta^{\mathrm{T}} V
\end{aligned}
$$

Problems of Poisson Regression

Variation Dependence

$$
\begin{aligned}
\log \{\operatorname{RR}(0,1 ; V)\} & =\alpha^{\mathrm{T}} V \\
\log \{\operatorname{pr}(Y=1 \mid Z=0, V)\} & =\beta^{\mathrm{T}} V
\end{aligned}
$$

Problems of Poisson Regression

Variation Dependence

$$
\begin{aligned}
\log \{\operatorname{RR}(0,1 ; V)\} & =\alpha^{\mathrm{T}} V \\
\log \{\operatorname{pr}(Y=1 \mid Z=0, V)\} & =\beta^{\mathrm{T}} V
\end{aligned}
$$

Problems of Poisson Regression

Variation Dependence

$$
\begin{aligned}
\log \{\operatorname{RR}(0,1 ; V)\} & =\alpha^{\mathrm{T}} V \\
\log \{\operatorname{pr}(Y=1 \mid Z=0, V)\} & =\beta^{\mathrm{T}} V
\end{aligned}
$$

Problems of Poisson Regression

Variation Dependence

$$
\begin{aligned}
\log \{\operatorname{RR}(0,1 ; V)\} & =\alpha^{\mathrm{T}} V \\
\log \{\operatorname{pr}(Y=1 \mid Z=0, V)\} & =\beta^{\mathrm{T}} V
\end{aligned}
$$

Problems of Poisson Regression

Prediction

Fig. 5. Predictions after fitted with Poisson regression

Problems of Poisson Regression

Prediction

Fig. 5. Predictions after fitted with Poisson regression

GLM Dilemma

Relative Risks Modeling

Richardson et al. (2017), binary treatment, $Z \in\{0,1\}$

$$
\begin{aligned}
\log \{\operatorname{pr}(Y=1 \mid Z=0, V)\} & =\beta^{\mathrm{T}} V
\end{aligned}
$$

Relative Risks Modeling

Richardson et al. (2017), binary treatment, $Z \in\{0,1\}$

$$
\log \{\operatorname{RR}(0,1 ; V)\}=\alpha^{\mathrm{T}} V
$$

Relative Risks Modeling

Richardson et al. (2017), binary treatment, $Z \in\{0,1\}$

$$
\begin{aligned}
\log \{\operatorname{RR}(0,1 ; V)\} & =\alpha^{\mathrm{T}} V \\
\log \{\mathrm{OP}(0,1 ; V)\} & =\beta^{\mathrm{T}} V
\end{aligned}
$$

Define odds product (OP) as:

$$
\mathrm{OP}\left(z_{0}, z ; v\right)=\frac{p_{0}(v) p_{z}(v)}{\left\{1-p_{0}(v)\right\}\left\{1-p_{z}(v)\right\}}
$$

where $\operatorname{pr}(Y=1 \mid Z=z, V=v)=p_{z}(v)$

Why Odds Product?

Fig. 4. Lines of constant odds product

Relative Risks Modeling

Richardson et al. (2017), binary treatment, $Z \in\{0,1\}$

$$
\begin{aligned}
\log \{\operatorname{RR}(0,1 ; V)\} & =\alpha^{\mathrm{T}} V \\
\log \{\mathrm{OP}(0,1 ; V)\} & =\beta^{\mathrm{T}} V
\end{aligned}
$$

Relative Risks Modeling

Richardson et al. (2017), binary treatment, $Z \in\{0,1\}$

$$
\begin{aligned}
& \log \{\operatorname{RR}(0,1 ; V)\}=\alpha^{\mathrm{T}} V \\
& \log \{\mathrm{OP}(0,1 ; V)\}=\beta^{\mathrm{T}} V
\end{aligned}
$$

Relative Risks Modeling

Richardson et al. (2017), binary treatment, $Z \in\{0,1\}$

$$
\begin{aligned}
& \log \{\operatorname{Rr}(0,1 ; V)\}=\alpha^{\mathrm{T}} V \\
& \log \{\mathrm{OP}(0,1 ; V)\}=\beta^{\mathrm{T}} V
\end{aligned}
$$

Our Methods for Modeling Relative Risks

Richardson et al. (2017), binary treatment, $Z \in\{0,1\}$

Our Methods for Modeling Relative Risks

Continuous or categorical treatments $Z \in \mathcal{Z}$

Our Methods for Modeling Relative Risks

Continuous or categorical treatments $Z \in \mathcal{Z}$

- Goal: find $\phi(v)$ so that for any v, the mapping given by $\left(\log \left\{\operatorname{RR}\left(z_{0}, z ; v\right)\right\}, z \in \mathcal{Z} ; \phi(v)\right) \rightarrow\left(p_{z}(v), z \in \mathcal{Z}\right)$
is a diffeomorphism between the interior of their domains.

Method 1: Monotonic Treatment Effects

Examples

$\operatorname{RR}\left(z_{0}, z ; v\right)$ is monotonic in z for all v

Recovery
Probability

Method 1: Monotonic Treatment Effects

Examples

$\operatorname{RR}\left(z_{0}, z ; v\right)$ is monotonic in z for all v

Income

Happiness

Method 1: Variation Independence with Monotonic Treatment Effects

- Assumption: $\operatorname{RR}\left(z_{0}, z ; v\right)$ is monotonic and bounded in $z, z \in(0,1)$

Method 1: Variation Independence with Monotonic Treatment Effects

- Assumption: $\operatorname{RR}\left(z_{0}, z ; v\right)$ is monotonic and bounded in $z, z \in(0,1)$

$$
\begin{aligned}
& \log \left\{\operatorname{RR}\left(z_{0}, z, ; v\right)\right\}, z \in(0,1) \\
& \log \{\mathrm{OP}(0,1 ; v)\}
\end{aligned}
$$

$$
p_{z}(v), z \in(0,1)
$$

is a diffeomorphism.

$$
\begin{aligned}
p_{z}(v) & =\operatorname{pr}(Y=1 \mid Z=z, V=v) \\
\operatorname{RR}\left(z_{0}, z ; v\right) & =\frac{\operatorname{pr}(Y=1 \mid V=v, Z=z)}{\operatorname{pr}\left(Y=1 \mid V=v, Z=z_{0}\right)} \\
\mathrm{OP}\left(z_{0}, z ; v\right) & =\frac{p_{0}(v) p_{z}(v)}{\left\{1-p_{0}(v)\right\}\left\{1-p_{z}(v)\right\}}
\end{aligned}
$$

Method 1: Variation Independence with Monotonic Treatment Effects

Theorem 1 Let $\mathcal{Z} \subseteq \mathbb{R}$ and \mathcal{V} be the support of Z and V, respectively. Let $h(z, v)$ and $g(v)$ be real-valued functions with support $\mathcal{Z} \times \mathcal{V}$ and \mathcal{V}, respectively. If $h(z, v)$ is bounded and monotonic in z, then there exists a unique set of proper probability distributions $\left\{p_{z}(v) ; z \in \mathcal{Z}, v \in \mathcal{V}\right\}$ such that $\log \left\{\operatorname{RR}\left(z_{0}, z ; v\right)\right\}=$ $h(z, v)$ and $\log \left\{\mathrm{OP}\left(z_{\text {inf }}, z_{\text {sup }} ; v\right)\right\}=g(v)$, where $z_{\text {inf }}=\inf \{z: z \in \mathcal{Z}\}, z_{\text {sup }}=$ $\sup \{z: z \in \mathcal{Z}\}$ and

$$
\mathrm{OP}\left(z_{\mathrm{inf}}, z_{\text {sup }} ; v\right)=\lim _{z_{1} \rightarrow z_{\text {inf }}} \lim _{z_{2} \rightarrow z_{\text {sup }}} \frac{p_{z_{1}}(v) p_{z_{2}}(v)}{\left(1-p_{z_{1}}(v)\right)\left(1-p_{z_{2}}(v)\right)} .
$$

Remark 1 The boundedness condition on $h(v, z)$ guarantees that the implied probabilities $p_{z}(v)$ are bounded away from 0.

Method 1: Variation Independence with Monotonic Treatment Effects

Why the assumption matters...
$z \in(0,1)$

Method 1: Variation Independence with Monotonic Treatment Effects

Why the assumption matters...
$z \in(0,1)$

$$
\left\{\begin{array}{l}
\log \{\mathrm{OP}(0,1 ; v)\} \\
\log \{\operatorname{RR}(0,1 ; v)\}
\end{array}\right.
$$

Method 1: Variation Independence with Monotonic Treatment Effects

Why the assumption matters...
$z \in(0,1)$

$$
\left\{\begin{array} { l }
{ \operatorname { l o g } \{ \mathrm { OP } (0 , 1 ; v) \} } \\
{ \operatorname { l o g } \{ \operatorname { R R } (0 , 1 ; v) \} }
\end{array} \quad \longrightarrow \left\{\begin{array}{l}
p_{0}(v) \\
p_{1}(v)
\end{array}\right.\right.
$$

Richardson et al. (2017):

$$
0<p_{0}(v), p_{1}(v)<1
$$

Method 1: Variation Independence with Monotonic Treatment Effects

Why the assumption matters...

$$
0<p_{0}(v), p_{1}(v)<1
$$

- Assumption: $\operatorname{RR}\left(z_{0}, z ; v\right)$ is monotonic in $z, z \in(0,1)$
equivalently, $p_{z}(v)$ is monotonic in z

$$
\min \left\{p_{0}(v), p_{1}(v)\right\} \leq p_{z}(v) \leq \max \left\{p_{0}(v), p_{1}(v)\right\} \quad z \in(0,1)
$$

Method 1: Variation Independence with Monotonic Treatment Effects

Why the assumption matters...

$$
0<p_{0}(v), p_{1}(v)<1
$$

- Assumption: $\operatorname{RR}\left(z_{0}, z ; v\right)$ is monotonic in $z, z \in(0,1)$
equivalently, $p_{z}(v)$ is monotonic in z
$0<\min \left\{p_{0}(v), p_{1}(v)\right\} \leq p_{z}(v) \leq \max \left\{p_{0}(v), p_{1}(v)\right\}<1 \quad z \in(0,1)$

Proper probabilities!

Method 1: Parameterization with Monotonic Treatment Effects

Consider bounded treatment $z \in[0,1]$

$$
\begin{aligned}
& \log \{\operatorname{RR}(0, z ; V, \gamma)\}=\gamma^{\mathrm{T}} V g(z) \quad z \in[0,1] \\
& \log \{\mathrm{OP}(0,1 ; V, \beta)\}=\beta^{\mathrm{T}} V
\end{aligned}
$$

where $g(z)$ is a monotone function of z

Method 1: Parameterization with Monotonic Treatment Effects

Log-likelihood for a unit:

$$
l\left(\gamma, \beta \mid z_{i}, v_{i}, y_{i}\right)=y_{i} \log \left\{p_{z_{i}}\left(v_{i} ; \gamma, \beta\right)\right\}+\left(1-y_{i}\right) \log \left\{1-p_{z_{i}}\left(v_{i} ; \gamma, \beta\right)\right\}
$$

Inference on γ and β can be obtained in standard fashion

Model 1: Simulation

$$
\begin{aligned}
& \log \{\operatorname{RR}(0, z ; V, \gamma)\}=\gamma^{\mathrm{T}} V z \quad z \in\{0,1,2\}, \\
& \log \{\operatorname{OP}(0,2 ; V, \beta)\}=\beta^{\mathrm{T}} V .
\end{aligned}
$$

Data simulation:

- $Z \sim \operatorname{unif}\{0,1,2\}$
- $V=\left(1, V_{1}\right)^{\mathrm{T}}, V_{1} \sim \operatorname{unif}[-2,2]$
- $\gamma=(0,1)^{\mathrm{T}}, \beta=(-0.5,1)^{\mathrm{T}}$

Model 1: Simulation Results

Table 1. Monte Carlo simulation results based on 1000 runs for the proposed estimator which assumes monotonic treatment effects.

Sample Size		100	500	1000
Bias(SE)				
	γ_{0}	$0.002(0.022)$	$-0.001(0.004)$	$0.000(0.002)$
	γ_{1}	$0.090(0.025)$	$0.013(0.004)$	$0.006(0.002)$
SD Accuracy				
	γ_{0}	1.022	1.040	0.994
	γ_{1}	1.109	1.032	1.018
Coverage				
	γ_{0}	0.950	0.949	0.948
	γ_{1}	0.949	0.950	0.958

SE, standard error.
SD Accuracy = estimated standard deviation / Monte Carlo standard deviation.
Nominal level $=95 \%$.

Model 1: Simulation Results

Table 1. Monte Carlo simulation results based on 1000 runs for the proposed estimator which assumes monotonic treatment effects.

Sample Size		100	500	1000
Bias(SE)				
	γ_{0}	$0.002(0.022)$	$-0.001(0.004)$	$0.000(0.002)$
	γ_{1}	$0.090(0.025)$	$0.013(0.004)$	$0.006(0.002)$
SD Accuracy				
	γ_{0}	1.022	1.040	0.994
	γ_{1}	1.109	1.032	1.018
Coverage				
	γ_{0}	0.950	0.949	0.948
	γ_{1}	0.949	0.950	0.958

Model 1: Simulation Results

Table 1. Monte Carlo simulation results based on 1000 runs for the proposed estimator which assumes monotonic treatment effects.

Sample Size		100	500	1000
Bias(SE)				
	γ_{0}	$0.002(0.022)$	$-0.001(0.004)$	$0.000(0.002)$
	γ_{1}	$0.090(0.025)$	$0.013(0.004)$	$0.006(0.002)$
SD Accuracy				
	γ_{0}	1.022	1.040	0.994
	γ_{1}	1.109	1.032	1.018
Coverage				
	γ_{0}	0.950	0.949	0.948
	γ_{1}	0.949	0.950	0.958

SE, standard error.
SD Accuracy = estimated standard deviation / Monte Carlo standard deviation.
Nominal level $=95 \%$.

Model 1: Simulation Results

Table 1. Monte Carlo simulation results based on 1000 runs for the proposed estimator which assumes monotonic treatment effects.

Sample Size		100	500	1000
Bias(SE)				
	γ_{0}	$0.002(0.022)$	$-0.001(0.004)$	$0.000(0.002)$
	γ_{1}	$0.090(0.025)$	$0.013(0.004)$	$0.006(0.002)$
SD Accuracy				
	γ_{0}	1.022	1.040	0.994
	γ_{1}	1.109	1.032	1.018
Coverage				
	γ_{0}	0.950	0.949	0.948
	γ_{1}	0.949	0.950	0.958

SE, standard error.
SD Accuracy = estimated standard deviation / Monte Carlo standard deviation.
Nominal level = 95\%.

The Model 1 cannot be applied if the relative risk is not monotonic in z.

Model 2: Categorical Treatment

$$
Z \in\left\{z_{0}, \ldots, z_{K}\right\}, K \geq 2
$$

- Recall the Goal: find $\phi(v)$ so that for any v, the mapping given by $(\log \{\operatorname{RR}(0, k ; v)\}, k \in\{1, \ldots, K\} ; \phi(v)) \rightarrow\left(p_{0}(v), \ldots, p_{K}(v)\right)$ is a diffeomorphism between the interior of their domains.

Generalized Odds Product (GOP)

e.g. For a categorical treatment $Z \in\left\{z_{0}, z_{1}, z_{2}\right\}$

$$
\operatorname{GOP}(v)=\frac{p_{0}(v)}{1-p_{0}(v)} \cdot \frac{p_{1}(v)}{1-p_{1}(v)} \cdot \frac{p_{2}(v)}{1-p_{2}(v)}
$$

Model 2: Variation Independence with A Categorical Treatment

Generalized odds product $\operatorname{GOP}(v)=\prod_{k=0}^{K} \frac{p_{k}(v)}{1-p_{k}(v)}$.

Model 2: Variation Independence with A Categorical Treatment

Generalized odds product $\operatorname{GOP}(v)=\prod_{k=0}^{K} \frac{p_{k}(v)}{1-p_{k}(v)}$.
Theorem 2 (Variation independence with a categorical treatment) Let \mathcal{M} denote $a(K+1)$-dimensional model on

$$
\begin{aligned}
\operatorname{RR}(0, k ; v) & =\frac{p_{k}(v)}{p_{0}(v)} \quad(k=1, \ldots, K), \\
\operatorname{GOP}(v) & =\prod_{k=0}^{K} \frac{p_{k}(v)}{1-p_{k}(v)}
\end{aligned}
$$

For any v, the map given by

$$
\begin{equation*}
\left(p_{0}(v), \ldots, p_{K}(v)\right) \rightarrow(\log \operatorname{RR}(0,1 ; v), \ldots, \log \operatorname{RR}(0, K ; v), \log \operatorname{GOP}(v)) \tag{1}
\end{equation*}
$$

is a diffeomorphism from $(0,1)^{K+1}$ to $(\mathbb{R})^{K+1}$. Furthermore, the models in \mathcal{M} are variation independent of each other.

Model 2: Parameterization With a Categorical Treatment

$$
\begin{aligned}
& Z \in\left\{z_{0}, \ldots, z_{K}\right\}, K \geq 2 \\
& \log \{\operatorname{RR}(v ; 0, k)\}=\alpha_{k}^{\mathrm{T}} X \quad(k=1, \ldots, K), \\
& \log \{\operatorname{GOP}(v)\}=\beta^{\mathrm{T}} W
\end{aligned}
$$

where $X=X(v), W=W(v)$

Model 2: Simulation Results

Table 2. Monte Carlo simulation results based on 1000 runs for the relative risk model with a generalized odds product nuisance model.

Sample Size	100		500		α_{1}	α_{2}	α_{1}
Bias(SE)	α_{1}	α_{2}				α_{2}	
	$-0.069(0.056)$	$0.038(0.033)$	$-0.016(0.009)$	$0.002(0.006)$	$-0.002(0.004)$	$0.004(0.003)$	
	$0.078(0.055)$	$0.162(0.045)$	$0.011(0.009)$	$0.023(0.007)$	$0.009(0.004)$	$0.013(0.004)$	
SD Accuracy							
	1.307	1.019	0.993	1.000	1.036	1.014	
	1.421	1.023	1.037	1.037	1.033	1.033	
Coverage						0.964	0.957
	0.975	0.954	0.951	0.948	0.956	0.955	

SE, standard error.
SD Accuracy = estimated standard deviation / Monte Carlo standard deviation.
Nominal level = 95\%.

$$
\alpha_{1}=(-0.5,1)^{\mathrm{T}}, \alpha_{2}=(0.5,1.5)^{\mathrm{T}}
$$

Model 2: Simulation Results

Table 2. Monte Carlo simulation results based on 1000 runs for the relative risk model with a generalized odds product nuisance model.

Sample Size	100		500		1000	
	α_{1}	α_{0}	α_{1}	α_{0}	α_{1}	α_{0}
Bias(SE)						
	$-0.069(0.056)$	0.038(0.033)	-0.016(0.009)	0.002(0.006)	-0.002(0.004)	0.004(0.003)
	0.078(0.055)	0.162(0.045)	0.011(0.009)	0.023(0.007)	0.009(0.004)	0.013(0.004)
SD Accuracy						
	1.307	1.019	0.993	1.000	1.036	1.014
	1.421	1.023	1.037	1.037	1.033	1.033
Coverage						
	0.975	0.954	0.951	0.948	0.964	0.957
	0.973	0.972	0.956	0.961	0.956	0.955

SE, standard error.
SD Accuracy = estimated standard deviation / Monte Carlo standard deviation.
Nominal level $=95 \%$.

$$
\alpha_{1}=(-0.5,1)^{\mathrm{T}}, \alpha_{2}=(0.5,1.5)^{\mathrm{T}}
$$

Model 2: Simulation Results

Table 2. Monte Carlo simulation results based on 1000 runs for the relative risk model with a generalized odds product nuisance model.

Sample Size	100		500		1000	
	α_{1}	α_{2}	α_{1}	α_{2}	α_{1}	α_{2}
Bias(SE)						
	-0.069(0.056)	0.038(0.033)	$-0.016(0.009)$	0.002(0.006)	$-0.002(0.004)$	0.004(0.003)
	0.078(0.055)	0.162(0.045)	0.011(0.009)	0.023(0.007)	0.009(0.004)	0.013(0.004)
SD Accuracy						
	1.307	1.019	0.993	1.000	1.036	1.014
	1.421	1.023	1.037	1.037	1.033	1.033
Coverage						
	0.975	0.954	0.951	0.948	0.964	0.957
	0.973	0.972	0.956	0.961	0.956	0.955

SE, standard error.
SD Accuracy = estimated standard deviation / Monte Carlo standard deviation.
Nominal level = 95\%.

$$
\alpha_{1}=(-0.5,1)^{\mathrm{T}}, \alpha_{2}=(0.5,1.5)^{\mathrm{T}}
$$

Model 2: Simulation Results

Table 2. Monte Carlo simulation results based on 1000 runs for the relative risk model with a generalized odds product nuisance model.

Sample Size	100		500		1000		
	α_{1}	α_{2}	α_{1}	α_{2}	α_{1}	α_{2}	
Bias(SE)							
	$-0.069(0.056)$	$0.038(0.033)$	$-0.016(0.009)$	$0.002(0.006)$	$-0.002(0.004)$	$0.004(0.003)$	
	$0.078(0.055)$	$0.162(0.045)$	$0.011(0.009)$	$0.023(0.007)$	$0.009(0.004)$	$0.013(0.004)$	
SD Accuracy							
	1.307	1.019	0.993	1.000	1.036	1.014	
	1.421	1.023	1.037	1.037	1.033	1.033	
Coverage							
	0.975	0.954	0.951	0.948	0.964	0.957	
	0.973	0.972	0.956	0.961	0.956	0.955	

SE, standard error.
SD Accuracy = estimated standard deviation / Monte Carlo standard deviation.
Nominal level = 95\%.

$$
\alpha_{1}=(-0.5,1)^{\mathrm{T}}, \alpha_{2}=(0.5,1.5)^{\mathrm{T}}
$$

How to model the association between death and passenger class?

Application: Titanic Data

Fig. 1. Probability of death varies with passenger class.

Application: Titanic Data

Fig. 5. Passengers' survival statuses by passenger class, age, and sex.

Four Models Estimating the Variation in the Relative Risk of Death

- Binary outcome: Death=1, survival $=0$
- Treatment: Passenger class ($1^{\text {st }}, 2^{\text {nd }}, 3^{\text {rd }} ; 1^{\text {st }}$ is the baseline)

Covariates: age, sex, age², sex*age

Model

Model 1: Monotone
Poisson model
Model 2: GOP
Logistic Model

Four Models Estimating the Variation in the Relative Risk of Death

- Binary outcome: Death=1, survival $=0$
- Treatment: Passenger class ($1^{\text {st }}, 2^{\text {nd }}, 3^{\text {rd }} ; 1^{\text {st }}$ is the baseline) Covariates: age, sex, age², sex*age

Poisson model
Model 2: GOP
Iogistic Model

Application: Titanic Data

Table 3. Coefficient estimates via different models

	2nd	2nd* male	$\begin{gathered} \text { 2nd* } \\ \text { age/10 } \end{gathered}$	$\begin{gathered} \hline \text { nd }^{*} \\ \text { age }^{2} / \\ 100 \end{gathered}$	$\begin{gathered} 2 \mathrm{nd}^{*} \\ \text { male* }^{2} \\ \text { age/10 } \end{gathered}$	3 rd	$\begin{aligned} & \text { 3rd* } \\ & \text { male } \end{aligned}$	$\begin{gathered} \text { 3rd* } \\ \text { age/10 } \end{gathered}$	$\begin{gathered} \hline 3 \mathrm{rd}^{*} \\ \text { age }^{2} \text { / } \\ 100 \end{gathered}$	$\begin{gathered} \text { 3rd* } \\ \text { male* } \\ \text { age/10 } \end{gathered}$
Point Estimate										
Monotone	1.891	-1.543	-0.165	0.011	0.058	-	-	-	-	-
Poisson	-1.211	0.938	0.969	-0.072	-0.487	2.232	-1.444	0.120	0.005	-0.254
GOP	-1.134	1.439	0.780	-0.033	-0.617	2.204	-1.212	0.053	0.020	-0.309
Standard Deviation										
Monotone	0.396	0.407	0.124	0.010	0.107	-	-	-	-	-
Poisson	2.077	1.967	0.620	0.033	0.542	1.874	1.739	0.570	0.030	0.482
GOP	1.230	1.251	0.369	0.029	0.314	0.888	0.957	0.260	0.021	0.236

1st, 2nd, 3rd: the first passenger class, the second passenger class, and the third passenger class.
The first class is chosen as the baseline.

Application: Titanic Data

Predicted probability via Monotone

-.". The second passenger class

- - The third passenger class

Female

Application: Titanic Data

Predicted probability via Monotone

-.". The second passenger class

- - The third passenger class

Female

Four Models Estimating the Variation in the Relative Risk of Death

- Binary outcome: Death=1, survival $=0$
- Treatment: Passenger class ($1^{\text {st }}, 2^{\text {nd }}, 3^{\text {rd }} ; 1^{\text {st }}$ is the baseline) Covariates: age, sex, age², sex*age

Application: Titanic Data

Table 3. Coefficient estimates via different models

[^0]
Application: Titanic Data

Table 3. Coefficient estimates via different models

	2nd	$\begin{aligned} & \text { 2nd* } \\ & \text { male } \end{aligned}$	$\begin{gathered} \hline 2 \mathrm{nd}^{*} \\ \text { age/10 } \end{gathered}$	$\begin{gathered} \hline 2 \text { nd }^{*} \\ \text { age }^{2} / \\ 100 \end{gathered}$	$\begin{gathered} \hline 2 \mathrm{nd}^{*} \\ \text { male* }^{*} \\ \text { age/10 } \end{gathered}$	3rd	$\begin{aligned} & \text { 3rd* } \\ & \text { male } \end{aligned}$	$\begin{gathered} \hline 3 \mathrm{rd}^{*} \\ \text { age/10 } \end{gathered}$	$\begin{gathered} \hline 3 \text { rd }^{*} \\ \text { age }^{2} / \\ 100 \end{gathered}$	$\begin{gathered} \hline 3 \mathrm{rd}^{*} \\ \text { male* } \\ \text { age/10 } \end{gathered}$
Point Estimate										
Monotone	1.891	1.543	-0.165	0.011	0.058					
Poisson	-1.211	0.938	0.969	-0.072	-0.487	2.232	-1.444	0.120	0.005	-0.254
GOP	-1.134	1.439	0.780	-0.033	-0.617	2.204	-1.212	0.053	0.020	-0.309
Standard Deviation										
Monotone	0.396	0.407	0.124	0.010	0.107					
Poisson	2.077	1.967	0.620	0.033	0.542	1.874	1.739	0.570	0.030	0.482
GOP	1.230	1.251	0.369	0.029	0.314	0.888	0.957	0.260	0.021	0.236

1st, 2nd, 3rd: the first passenger class, the second passenger class, and the third passenger class.
The first class is chosen as the baseline.

Application: Titanic Data

Fig. 5. Predicted probability of death

- The first passenger class
..." The second passenger class
ーー The third passenger class
\square Female
Male

Application: Titanic Data

Table 3. Coefficient estimates via different models

	2nd	2nd* male	$\begin{gathered} \text { 2nd* }^{*} \\ \text { age/10 } \end{gathered}$	$\begin{gathered} 2 \text { nd }^{*} \\ \text { age }^{2} / \\ 100 \\ \hline \end{gathered}$	$\begin{gathered} \hline 2 \text { nd }^{*} \\ \text { male* }^{*} \\ \text { age/10 } \end{gathered}$	3rd	$3 \mathrm{rd}^{*}$ male	$\begin{gathered} \hline \text { 3rd* } \\ \text { age/10 } \end{gathered}$	$\begin{gathered} \hline 3 \mathrm{rd}^{*} \\ \mathrm{age}^{2} / \\ 100 \end{gathered}$	$\begin{gathered} \hline 3 \mathrm{rd}^{*} \\ \text { male* } \\ \text { age/10 } \end{gathered}$
Point Estimate										
Monotone	1.891	-1.543	-0.165	0.011	0.058	-	-	-	-	-
Poisson	-1.211	0.938	0.969	-0.072	-0.487	2.232	-1.444	0.120	0.005	-0.254
GOP	-1.134	1.439	0.780	-0.033	-0.617	2.204	-1.212	0.053	0.020	-0.309
Standard Deviation										
Monotone	0.396	0.407	0.124	0.010	0.107	-	-	-	-	-
Poisson	2.077	1.967	0.620	0.033	0.542	1.874	1.739	0.570	0.030	0.482
GOP	1.230	1.251	0.369	0.029	0.314	0.888	0.957	0.260	0.021	0.236

1st, 2nd, 3rd: the first passenger class, the second passenger class, and the third passenger class.
The first class is chosen as the baseline.

Application: Titanic Data

Fig. 5. Predicted probability of death

- The first passenger class
-.". The second passenger class
ーー The third passenger class

Summary

- Two novel methods to model multiplicative treatment effects with a binary outcome.
- The first method relies on a monotonic treatment effect assumption.
- The second one proposes an alternative approach that involves a novel generalized odds product model.

Discussion

- Model 1 cannot be applied if the relative risk is not monotonic in treatment.
- Exploratory data analysis
- Substantive knowledge
- Model 2 is more flexible than Model 1, but has K times as many parameters.

Thank you!!!

Reference

- Lumley, Thomas; Kronmal, Richard; and Ma, Shuangge (July 2006), "Relative Risk Regression in Medical Research: Models, Contrasts, Estimators, and Algorithms", UW Biostatistics Working Paper Series. Working Paper 293.
- Sander Greenland; James M. Robins; Judea Pearl, "Confounding and collapsibility in causal inference" (Feb. 1999), Statistical Science, Vol. 14, No. 1, 29-46.
- Thomas S. Richardson, James M. Robins \& Linbo Wang (2017) "On Modeling and Estimation for the Relative Risk and Risk Difference", Journal of the American Statistical Association, 112:519, 1121-1130.
- Abrahim Al-Mamgani, Wim L. J. van Putten, Wilma D. Heemsbergen, Geert J. L. H. van Leenders, Annerie Slot, Michel F. H. Dielwart, Luca Incrocci, Joos V. Lebesque, "Update of Dutch multicenter dose-escalation trial of radiotherapy for localized prostate cancer",Int J Radiat Oncol Biol Phys. 2008 Nov 15; 72(4): 980-988.
- Easterlin, Richard A, (2001), Income and Happiness: Towards an Unified Theory, Economic Journal, 111, issue 473, p. 465-84.

[^0]: 1st, 2nd, 3rd: the first passenger class, the second passenger class, and the third passenger class.
 The first class is chosen as the baseline.

