Multiplicative Effect Modeling: The General Case

Jackie (Jiaqi) Yin October 5th, 2019

Women in Statistics and Data Science 2019

UNIVERSITY of WASHINGTON

Titanic

Titanic Deaths

Fig. 1. Probability of death varies with passenger class.

Titanic Deaths

Fig. 1. Probability of death varies with passenger class.

Titanic Deaths

Fig. 1. Probability of death varies with passenger class.

Titanic Sinks

Fig. 2. Probability of death stratified by passenger class, age, and sex.

Titanic Sinks

Fig. 2. Probability of death stratified by passenger class, age, and sex.

Titanic Sinks

Fig. 2. Probability of death stratified by passenger class, age, and sex.

How to model the association between death and passenger class?

Problem Description

Setting

- Binary outcome $Y \in \{0, 1\}$
- Categorical or continuous treatment $Z \in \mathcal{Z}$
- Covariates $V \in \mathcal{V}$

Problem Description

Setting

- Binary outcome $Y \in \{0, 1\}$
- Categorical or continuous treatment $Z \in \mathcal{Z}$
- Covariates $V \in \mathcal{V}$

Problem:

• Quantify the association between Z and Y, and how that varies with V

Measures of Association for Treatment

• Odds Ratio (OR):

$$OR(z_0, z; v) = \frac{\operatorname{pr}(Y = 1 \mid Z = z, V = v) / \operatorname{pr}(Y = 0 \mid Z = z, V = v)}{\operatorname{pr}(Y = 1 \mid Z = z_0, V = v) / \operatorname{pr}(Y = 0 \mid Z = z_0, V = v)}$$

Binary outcome $Y \in \{0, 1\}$

Categorical or continuous treatment $Z \in \mathcal{Z}$

Covariates $V \in \mathcal{V}$

Measures of Association for Treatment

• Odds Ratio (OR):

$$OR(z_0, z; v) = \frac{\Pr(Y = 1 \mid Z = z, V = v) / \Pr(Y = 0 \mid Z = z, V = v)}{\Pr(Y = 1 \mid Z = z_0, V = v) / \Pr(Y = 0 \mid Z = z_0, V = v)}$$

• Relative Risk (RR):

$$\operatorname{RR}(z_0, z; v) = \frac{\operatorname{pr}(Y = 1 \mid Z = z, V = v)}{\operatorname{pr}(Y = 1 \mid Z = z_0, V = v)}$$

Binary outcome $Y \in \{0, 1\}$

Categorical or continuous treatment $Z \in \mathcal{Z}$

Covariates $V \in \mathcal{V}$

UNIVERSITY of WASHINGTON

Generalized Linear Models (GLMs) for Binary outcome

MeasuresGLMsOdds RatioLogistic RegressionRelative RiskPoisson Regression

Why not Odds Ratio?

Problems of Odds Ratio

• **Interpretation:** not intuitive; scientists rarely ask for them (Lumley et al., 2006).

Tab. 1. Odds ratio of synthetic randomized trial.

	Population			
	Treated	Untreated		
Disease	11038	38988		
No disease	8962	41012		
Odds ratios	1	.29		

Tab. 1. Odds ratio of synthetic randomized trial.

	Ρορυ	llation	Female		
	Treated	Untreated	Treated	Untreated	
Disease	11038	38988	9948	38388	
No disease	8962	41012	52	1612	
Odds ratios	1.29		8.03		

Tab. 1. Odds ratio of synthetic randomized trial.

	Population		Female		Male	
	Treated	Untreated	Treated	Untreated	Treated	Untreated
Disease	11038	38988	9948	38388	1090	600
No disease	8962	41012	52	1612	8910	39400
Odds ratios	1.29		8.03		8.03	

1.29 < 8.03

Measures of Association for Treatment

Problems of Odds Ratio

- **Interpretation:** not intuitive; scientists rarely ask for them (Lumley et al., 2006).
- **Lack of collapsibility:** the marginal odds ratio will not lie in the convex hull of stratum-specific odds ratios (Greenland et al., 1999).

Relative Risk is Collapsible

Fig 3. lines of constant Relative risk

Relative Risk is Collapsible

Fig 3. lines of constant Relative risk

Relative Risk is Collapsible

Fig 3. lines of constant Relative risk

Generalized Linear Models (GLMs) for Binary outcome

MeasuresGLMsOdds RatioLogistic RegressionRelative RiskPoisson Regression

Relative Risk Modeling

Generalized Linear Model (GLM)

• Poisson Regression:

 $\log\{\operatorname{pr}(Y=1|Z,V)\} = Z\alpha^{\mathrm{T}}V + \beta^{\mathrm{T}}V$

Relative Risk Modeling

Generalized Linear Model (GLM)

• Poisson Regression:

 $\log\{\mathrm{pr}(Y=1|Z,V)\}=Z\alpha^{\mathrm{\scriptscriptstyle T}}V+\beta^{\mathrm{\scriptscriptstyle T}}V$

Equivalently, for binary treatment $Z \in \{0, 1\}$ $\log\{\operatorname{RR}(0, 1; V)\} = \alpha^{\mathrm{T}} V$ $\log\{\operatorname{pr}(Y = 1 \mid Z = 0, V)\} = \beta^{\mathrm{T}} V$

Relative Risk Modeling

Generalized Linear Model (GLM)

• Poisson Regression:

 $\log\{\operatorname{pr}(Y=1|Z,V)\} = Z\alpha^{\mathrm{T}}V + \beta^{\mathrm{T}}V$

Equivalently, for binary treatment $Z \in \{0, 1\}$ $\log \{ \operatorname{RR}(0, 1; V) \} = \alpha^{\mathrm{T}} V$ $\log \{ \operatorname{pr}(Y = 1 \mid Z = 0, V) \} = \beta^{\mathrm{T}} V$

Variation Dependence

 $\begin{array}{l} & & & \\ &$

Variation Dependence

 $\begin{array}{l} & & & \\ & & & \\$

Variation Dependence

 $\begin{array}{l} & & & \\ & & & \\$

Variation Dependence

$$\begin{split} & \fbox{O} \log\{\operatorname{RR}(0,1;V)\} = \alpha^{\mathrm{T}}V\\ & \log\{\operatorname{pr}(Y=1 \mid Z=0,V)\} = \beta^{\mathrm{T}}V \end{split}$$

Variation Dependence

 $\frac{\partial \mathcal{P}}{\partial \mathcal{P}} \log\{\operatorname{RR}(0,1;V)\} = \alpha^{\mathrm{T}}V$ $\bigcirc \log\{\operatorname{pr}(Y=1 \mid Z=0,V)\} = \beta^{\mathrm{T}}V$

Prediction

Fig. 5. Predictions after fitted with Poisson regression

Prediction

Fig. 5. Predictions after fitted with Poisson regression

GLM Dilemma

UNIVERSITY of WASHINGTON
Richardson et al. (2017), binary treatment, $Z \in \{0, 1\}$ $\frac{1}{2} \log \{ \operatorname{RR}(0, 1; V) \} = \alpha^{\mathrm{T}} V$ $\bigcirc \log \{ \operatorname{pr}(Y = 1 \mid Z = 0, V) \} = \beta^{\mathrm{T}} V$

Richardson et al. (2017), binary treatment, $Z \in \{0, 1\}$ $\log \{ \operatorname{RR}(0, 1; V) \} = \alpha^{\mathrm{T}} V$

Richardson et al. (2017), binary treatment, $Z \in \{0, 1\}$ $\log \{ \operatorname{RR}(0, 1; V) \} = \alpha^{\mathrm{T}} V$ $\log \{ \operatorname{OP}(0, 1; V) \} = \beta^{\mathrm{T}} V$

Define odds product (OP) as:

$$OP(z_0, z; v) = \frac{p_0(v)p_z(v)}{\{1 - p_0(v)\}\{1 - p_z(v)\}},$$

where $pr(Y = 1 | Z = z, V = v) = p_z(v)$

Why Odds Product?

$$OP(0,1;v) = \frac{p_0(v)p_1(v)}{\{1 - p_0(v)\}\{1 - p_1(v)\}} \qquad RR(0,1;v) = \frac{p_1(v)p_1(v)}{p_0(v)}$$

Variation Independence!

Fig. 4. Lines of constant odds product

Richardson et al. (2017), binary treatment, $Z \in \{0, 1\}$

 $\oint \log\{\operatorname{RR}(0,1;V)\} = \alpha^{\mathrm{T}}V$ $\log\{\operatorname{OP}(0,1;V)\} = \beta^{\mathrm{T}}V$

Richardson et al. (2017), binary treatment, $Z \in \{0, 1\}$

 $\oint \log\{\operatorname{RR}(0,1;V)\} = \alpha^{\mathrm{T}}V$ $\oint \log\{\operatorname{OP}(0,1;V)\} = \beta^{\mathrm{T}}V$

Richardson et al. (2017), binary treatment, $Z \in \{0, 1\}$ \bigcirc

 $\oint \log\{\operatorname{RR}(0,1;V)\} = \alpha^{\mathrm{T}}V$ $\oint \log\{\operatorname{OP}(0,1;V)\} = \beta^{\mathrm{T}}V$

Our Methods for Modeling Relative Risks

Richardson et al. (2017), binary treatment, $Z \in \{0, 1\}$

Our Methods for Modeling Relative Risks

Continuous or **categorical** treatments $Z \in \mathcal{Z}$

Our Methods for Modeling Relative Risks

Continuous or **categorical** treatments $Z \in \mathcal{Z}$

• **Goal**: find $\phi(v)$ so that for any v, the mapping given by $(\log\{\operatorname{RR}(z_0, z; v)\}, z \in \mathbb{Z}; \phi(v)) \rightarrow (p_z(v), z \in \mathbb{Z})$

is a **diffeomorphism** between the interior of their domains.

Method 1: Monotonic Treatment Effects

Examples

 $\operatorname{RR}(z_0, z; v)$ is monotonic in z for all v

Method 1: Monotonic Treatment Effects

Examples

 $\operatorname{RR}(z_0, z; v)$ is monotonic in z for all v

• Assumption: $RR(z_0, z; v)$ is monotonic and bounded in $z, z \in (0, 1)$

 $p_{z}(v) = \operatorname{pr}(Y = 1 \mid Z = z, V = v)$ $\operatorname{RR}(z_{0}, z; v) = \frac{\operatorname{pr}(Y = 1 \mid V = v, Z = z)}{\operatorname{pr}(Y = 1 \mid V = v, Z = z_{0})}$ $\operatorname{OP}(z_{0}, z; v) = \frac{p_{0}(v)p_{z}(v)}{\{1 - p_{0}(v)\}\{1 - p_{z}(v)\}}$

• Assumption: $\operatorname{RR}(z_0, z; v)$ is monotonic and bounded in $z, z \in (0, 1)$

 $\log\{\operatorname{RR}(z_0, z, ; v)\}, z \in (0, 1);$ $\log\{\operatorname{OP}(0, 1; v)\}$ $p_z(v), z \in (0, 1)$

is a diffeomorphism.

 $p_{z}(v) = \operatorname{pr}(Y = 1 \mid Z = z, V = v)$ $\operatorname{RR}(z_{0}, z; v) = \frac{\operatorname{pr}(Y = 1 \mid V = v, Z = z)}{\operatorname{pr}(Y = 1 \mid V = v, Z = z_{0})}$ $\operatorname{OP}(z_{0}, z; v) = \frac{p_{0}(v)p_{z}(v)}{\{1 - p_{0}(v)\}\{1 - p_{z}(v)\}}$

UNIVERSITY of WASHINGTON

Theorem 1 Let $\mathcal{Z} \subseteq \mathbb{R}$ and \mathcal{V} be the support of Z and V, respectively. Let h(z, v) and g(v) be real-valued functions with support $\mathcal{Z} \times \mathcal{V}$ and \mathcal{V} , respectively. If h(z, v) is bounded and monotonic in z, then there exists a unique set of proper probability distributions $\{p_z(v); z \in \mathcal{Z}, v \in \mathcal{V}\}$ such that $\log\{\operatorname{RR}(z_0, z; v)\} = h(z, v)$ and $\log\{\operatorname{OP}(z_{\inf}, z_{\sup}; v)\} = g(v)$, where $z_{\inf} = \inf\{z : z \in \mathcal{Z}\}, z_{\sup} = \sup\{z : z \in \mathcal{Z}\}$ and

$$OP(z_{inf}, z_{sup}; v) = \lim_{z_1 \to z_{inf}} \lim_{z_2 \to z_{sup}} \frac{p_{z_1}(v) p_{z_2}(v)}{(1 - p_{z_1}(v))(1 - p_{z_2}(v))}.$$

Remark 1 The boundedness condition on h(v, z) guarantees that the implied probabilities $p_z(v)$ are bounded away from 0.

Why the assumption matters... $z \in (0, 1)$

 $p_{z}(v) = pr(Y = 1 | Z = z, V = v)$ $RR(z_{0}, z; v) = \frac{pr(Y = 1 | V = v, Z = z)}{pr(Y = 1 | V = v, Z = z_{0})}$ $OP(z_{0}, z; v) = \frac{p_{0}(v)p_{z}(v)}{\{1 - p_{0}(v)\}\{1 - p_{z}(v)\}}$ UNIVERSITY of WASHINGTON

Why the assumption matters... $z \in (0,1)$ $\int_{\log\{\operatorname{RR}(0,1;v)\}}^{\log\{\operatorname{OP}(0,1;v)\}}$

> $p_{z}(v) = pr(Y = 1 | Z = z, V = v)$ $RR(z_{0}, z; v) = \frac{pr(Y = 1 | V = v, Z = z)}{pr(Y = 1 | V = v, Z = z_{0})}$ $OP(z_{0}, z; v) = \frac{p_{0}(v)p_{z}(v)}{\{1 - p_{0}(v)\}\{1 - p_{z}(v)\}}$ UNIVERSITY of WASHINGTON

Why the assumption matters... $z \in (0, 1)$ $\begin{cases} \log\{OP(0, 1; v)\} \\ \log\{RR(0, 1; v)\} \end{cases} \longrightarrow \begin{cases} p_0(v) \\ p_1(v) \end{cases}$

Richardson et al. (2017):

 $0 < p_0(v), p_1(v) < 1$

 $p_{z}(v) = pr(Y = 1 | Z = z, V = v)$ $RR(z_{0}, z; v) = \frac{pr(Y = 1 | V = v, Z = z)}{pr(Y = 1 | V = v, Z = z_{0})}$ $OP(z_{0}, z; v) = \frac{p_{0}(v)p_{z}(v)}{\{1 - p_{0}(v)\}\{1 - p_{z}(v)\}}$ UNIVERSITY of WASHINGTON

Why the assumption matters...

 $0 < p_0(v), p_1(v) < 1$

• Assumption: $RR(z_0, z; v)$ is monotonic in $z, z \in (0, 1)$ equivalently, $p_z(v)$ is monotonic in z

 $\min\{p_0(v), p_1(v)\} \le p_z(v) \le \max\{p_0(v), p_1(v)\} \qquad z \in (0, 1)$

 $p_{z}(v) = \operatorname{pr}(Y = 1 \mid Z = z, V = v)$ $\operatorname{RR}(z_{0}, z; v) = \frac{\operatorname{pr}(Y = 1 \mid V = v, Z = z)}{\operatorname{pr}(Y = 1 \mid V = v, Z = z_{0})}$ $\operatorname{OP}(z_{0}, z; v) = \frac{p_{0}(v)p_{z}(v)}{\{1 - p_{0}(v)\}\{1 - p_{z}(v)\}}$

Why the assumption matters...

 $0 < p_0(v), p_1(v) < 1$

• Assumption: $\operatorname{RR}(z_0, z; v)$ is monotonic in $z, z \in (0, 1)$ equivalently, $p_z(v)$ is monotonic in z

 $0 < \min\{p_0(v), p_1(v)\} \le p_z(v) \le \max\{p_0(v), p_1(v)\} < 1 \quad z \in (0, 1)$

Proper probabilities!

 $p_{z}(v) = \operatorname{pr}(Y = 1 \mid Z = z, V = v)$ $\operatorname{RR}(z_{0}, z; v) = \frac{\operatorname{pr}(Y = 1 \mid V = v, Z = z)}{\operatorname{pr}(Y = 1 \mid V = v, Z = z_{0})}$ $\operatorname{OP}(z_{0}, z; v) = \frac{p_{0}(v)p_{z}(v)}{\{1 - p_{0}(v)\}\{1 - p_{z}(v)\}}$

Method 1: Parameterization with Monotonic Treatment Effects

Consider bounded treatment $z \in [0, 1]$

 $\log\{\operatorname{RR}(0, z; V, \gamma)\} = \gamma^{\mathrm{T}} V g(z) \quad z \in [0, 1]$ $\log\{\operatorname{OP}(0, 1; V, \beta)\} = \beta^{\mathrm{T}} V,$

where g(z) is a monotone function of z

Method 1: Parameterization with Monotonic Treatment Effects

Log-likelihood for a unit:

 $l(\gamma, \beta | z_i, v_i, y_i) = y_i \log\{p_{z_i}(v_i; \gamma, \beta)\} + (1 - y_i) \log\{1 - p_{z_i}(v_i; \gamma, \beta)\}$

Inference on γ and β can be obtained in standard fashion

Model 1: Simulation

 $\log\{\operatorname{RR}(0, z; V, \gamma)\} = \gamma^{\mathrm{T}} V z \quad z \in \{0, 1, 2\},\\ \log\{\operatorname{OP}(0, 2; V, \beta)\} = \beta^{\mathrm{T}} V.$

Data simulation:

- $Z \sim unif\{0, 1, 2\}$
- $V = (1, V_1)^{\mathrm{T}}, V_1 \sim \mathrm{unif}[-2, 2]$
- $\gamma = (0, 1)^{\mathrm{T}}, \, \beta = (-0.5, 1)^{\mathrm{T}}$

Table 1. Monte Carlo simulation results based on 1000 runs for the proposed estimator which assumes monotonic treatment effects.

Sample Size		100	500	1000
Bias(SE)				
	γ_0	0.002(0.022)	-0.001(0.004)	0.000(0.002)
	γ_1	0.090(0.025)	0.013(0.004)	0.006(0.002)
SD Accuracy				
	γ_0	1.022	1.040	0.994
	γ_1	1.109	1.032	1.018
Coverage				
	γ_0	0.950	0.949	0.948
	γ_1	0.949	0.950	0.958

SE, standard error.

SD Accuracy = estimated standard deviation / Monte Carlo standard deviation. Nominal level = 95%.

 $\label{eq:gamma} \gamma = (0,1)^{\scriptscriptstyle \mathrm{T}}$ University of Washington

Table 1. Monte Carlo simulation results based on 1000 runs for the proposed estimator which assumes monotonic treatment effects.

Sample Size		100	500	1000
$\operatorname{Bias}(\operatorname{SE})$				
	$\gamma_0 \ \gamma_1$	0.002(0.022) 0.090(0.025)	$-0.001(0.004) \\ 0.013(0.004)$	0.000(0.002) 0.006(0.002)
SD Accuracy				
	γ_0	1.022	1.040	0.994
	γ_1	1.109	1.032	1.018
Coverage				
	γ_0	0.950	0.949	0.948
	γ_1	0.949	0.950	0.958

SE, standard error.

SD Accuracy = estimated standard deviation / Monte Carlo standard deviation. Nominal level = 95%.

 $\label{eq:gamma} \gamma = (0,1)^{\mathrm{\tiny T}}$ University of Washington

Table 1. Monte Carlo simulation results based on 1000 runs for the proposed estimator which assumes monotonic treatment effects.

Sample Size		100	500	1000
Bias(SE)				
	γ_0	0.002(0.022)	-0.001(0.004)	0.000(0.002)
	γ_1	0.090(0.025)	0.013(0.004)	0.006(0.002)
SD Accuracy				
	γ_0	1.022	1.040	0.994
	γ_1	1.109	1.032	1.018
Coverage				
	γ_0	0.950	0.949	0.948
	γ_1	0.949	0.950	0.958

SE, standard error.

SD Accuracy = estimated standard deviation / Monte Carlo standard deviation. Nominal level = 95%.

 $\label{eq:gamma} \gamma = (0,1)^{\mathrm{\tiny T}}$ University of Washington

Table 1. Monte Carlo simulation results based on 1000 runs for the proposed estimator which assumes monotonic treatment effects.

Sample Size		100	500	1000
Bias(SE)				
	γ_0	0.002(0.022)	-0.001(0.004)	0.000(0.002)
	γ_1	0.090(0.025)	0.013(0.004)	0.006(0.002)
SD Accuracy				
	γ_0	1.022	1.040	0.994
	γ_1	1.109	1.032	1.018
Coverage				
	γ_0	0.950	0.949	0.948
	γ_1	0.949	0.950	0.958

SE, standard error.

SD Accuracy = estimated standard deviation / Monte Carlo standard deviation. **Nominal level = 95%.**

 $\label{eq:gamma} \gamma = (0,1)^{\mathrm{\tiny T}}$ university of Washington

The Model 1 cannot be applied if the relative risk is not monotonic in z.

Model 2: Categorical Treatment

 $Z \in \{z_0, \ldots, z_K\}, K \ge 2$

• **Recall the Goal:** find $\phi(v)$ so that for any v, the mapping given by $(\log\{\operatorname{RR}(0,k;v)\}, k \in \{1,\ldots,K\}; \phi(v)) \rightarrow (p_0(v),\ldots,p_K(v))$

is a **diffeomorphism** between the interior of their domains.

$$p_k(v) = \operatorname{pr}(Y = 1 \mid Z = z_k, V = v$$
$$\operatorname{RR}(0, k; v) = \frac{p_k(v)}{p_0(v)}$$

Generalized Odds Product (GOP)

e.g. For a categorical treatment $Z \in \{z_0, z_1, z_2\}$

$$GOP(v) = \frac{p_0(v)}{1 - p_0(v)} \cdot \frac{p_1(v)}{1 - p_1(v)} \cdot \frac{p_2(v)}{1 - p_2(v)}$$

Model 2: Variation Independence with A Categorical Treatment

Generalized odds product $GOP(v) = \prod_{k=0}^{K} \frac{p_k(v)}{1 - p_k(v)}$.

Model 2: Variation Independence with A Categorical Treatment

Generalized odds product
$$GOP(v) = \prod_{k=0}^{K} \frac{p_k(v)}{1 - p_k(v)}$$
.

Theorem 2 (Variation independence with a categorical treatment) Let \mathcal{M} denote a (K+1)-dimensional model on

$$RR(0,k;v) = \frac{p_k(v)}{p_0(v)} \quad (k = 1, \dots, K),$$
$$GOP(v) = \prod_{k=0}^{K} \frac{p_k(v)}{1 - p_k(v)}.$$

For any v, the map given by

$$(p_0(v),\ldots,p_K(v)) \to (\log \operatorname{RR}(0,1;v),\ldots,\log \operatorname{RR}(0,K;v),\log \operatorname{GOP}(v))$$
(1)

is a diffeomorphism from $(0,1)^{K+1}$ to $(\mathbb{R})^{K+1}$. Furthermore, the models in \mathcal{M} are variation independent of each other.

Model 2: Parameterization With a Categorical Treatment

 $Z \in \{z_0, \dots, z_K\}, K \ge 2$ $\log\{\operatorname{RR}(v; 0, k)\} = \alpha_k^{\mathrm{T}} X \quad (k = 1, \dots, K),$ $\log\{\operatorname{GOP}(v)\} = \beta^{\mathrm{T}} W,$

where X = X(v), W = W(v)

$$p_k(v) = \operatorname{pr}(Y = 1 \mid Z = z_k, V = v)$$

$$\operatorname{RR}(0, k; v) = \frac{p_k(v)}{p_0(v)}$$

$$\operatorname{GOP}(v) = \prod_{k=0}^{K} \frac{p_k(v)}{1 - p_k(v)}$$

Table 2. Monte Carlo simulation results based on 1000 runs for the relative risk model with a generalized odds product nuisance model.

Sample Size	100		50	00	1000	
	$lpha_1$	$lpha_2$	$lpha_1$	$lpha_2$	α_1	α_2
Bias(SE)						
	-0.069(0.056)	0.038(0.033)	-0.016(0.009)	0.002(0.006)	-0.002(0.004)	0.004(0.003)
	0.078(0.055)	0.162(0.045)	0.011(0.009)	0.023(0.007)	0.009(0.004)	0.013(0.004)
SD Accuracy	7					
	1.307	1.019	0.993	1.000	1.036	1.014
	1.421	1.023	1.037	1.037	1.033	1.033
Coverage						
	0.975	0.954	0.951	0.948	0.964	0.957
	0.973	0.972	0.956	0.961	0.956	0.955

SE, standard error.

SD Accuracy = estimated standard deviation / Monte Carlo standard deviation. Nominal level = 95%.

 $\alpha_1 = (-0.5, 1)^{\mathrm{T}}, \ \alpha_2 = (0.5, 1.5)^{\mathrm{T}}$

71

Table 2. Monte Carlo simulation results based on 1000 runs for the relative risk model with a generalized odds product nuisance model.

Sample Size	100		50	00	1000	
	α_1	α o	α_1	α_{2}	α_1	α_{2}
Bias(SE)						
	-0.069(0.056)	0.038(0.033)	-0.016(0.009)	0.002(0.006)	-0.002(0.004)	0.004(0.003)
	0.078(0.055)	0.162(0.045)	0.011(0.009)	0.023(0.007)	0.009(0.004)	0.013(0.004)
SD Accuracy	7					
	1.307	1.019	0.993	1.000	1.036	1.014
	1.421	1.023	1.037	1.037	1.033	1.033
Coverage						
	0.975	0.954	0.951	0.948	0.964	0.957
	0.973	0.972	0.956	0.961	0.956	0.955

SE, standard error.

SD Accuracy = estimated standard deviation / Monte Carlo standard deviation. Nominal level = 95%.

 $\alpha_1 = (-0.5, 1)^{\mathrm{T}}, \, \alpha_2 = (0.5, 1.5)^{\mathrm{T}}$

Table 2. Monte Carlo simulation results based on 1000 runs for the relative risk model with a generalized odds product nuisance model.

Sample Size	100		50	00	1000	
	α_1	$lpha_2$	α_1	$lpha_2$	$lpha_1$	$lpha_2$
Bias(SE)						
	-0.069(0.056)	0.038(0.033)	-0.016(0.009)	0.002(0.006)	-0.002(0.004)	0.004(0.003)
	0.078(0.055)	0.162(0.045)	0.011(0.009)	0.023(0.007)	0.009(0.004)	0.013(0.004)
SD Accuracy						
	1.307	1.019	0.993	1.000	1.036	1.014
	1.421	1.023	1.037	1.037	1.033	1.033
Coverage						
	0.975	0.954	0.951	0.948	0.964	0.957
	0.973	0.972	0.956	0.961	0.956	0.955

SE, standard error.

SD Accuracy = estimated standard deviation / Monte Carlo standard deviation. Nominal level = 95%.

 $\alpha_1 = (-0.5, 1)^{\mathrm{T}}, \, \alpha_2 = (0.5, 1.5)^{\mathrm{T}}$
Model 2: Simulation Results

Table 2. Monte Carlo simulation results based on 1000 runs for the relative risk model with a generalized odds product nuisance model.

Sample Size	1(00	50	00	1000			
	$lpha_1$	$lpha_2$	α_1	$lpha_2$	$lpha_1$	$lpha_2$		
$\operatorname{Bias}(\operatorname{SE})$								
	-0.069(0.056)	0.038(0.033)	-0.016(0.009)	0.002(0.006)	-0.002(0.004)	0.004(0.003)		
	0.078(0.055)	0.162(0.045)	0.011(0.009)	0.023(0.007)	0.009(0.004)	0.013(0.004)		
SD Accuracy	τ							
	1.307	1.019	0.993	1.000	1.036	1.014		
	1.421	1.023	1.037	1.037	1.033	1.033		
Coverage								
	0.975	0.954	0.951	0.948	0.964	0.957		
	0.973	0.972	0.956	0.961	0.956	0.955		

SE, standard error.

SD Accuracy = estimated standard deviation / Monte Carlo standard deviation. Nominal level = 95%.

 $\alpha_1 = (-0.5, 1)^{\mathrm{T}}, \, \alpha_2 = (0.5, 1.5)^{\mathrm{T}}$

UNIVERSITY of WASHINGTON

How to model the association between death and passenger class?

Fig. 1. Probability of death varies with passenger class.

Fig. 5. Passengers' survival statuses by passenger class, age, and sex.

Four Models Estimating the Variation in the Relative Risk of Death

- Binary outcome: Death=1, survival = 0
- Treatment: Passenger class (1st, 2nd, 3rd; 1st is the baseline)
- Covariates: age, sex, age², sex*age

Four Models Estimating the Variation in the Relative Risk of Death

- Binary outcome: Death=1, survival = 0
- Treatment: Passenger class (1st, 2nd, 3rd; 1st is the baseline)
- Covariates: age, sex, age², sex*age

Table 3. Coefficient estimates via different models

	2nd	$2nd^*$	$2nd^*$	$2nd^*$	$2nd^*$	3rd	3rd*	3rd*	3rd*	3rd*
		male	age/10	$age^2/$	$male^*$		male	age/10	$age^2/$	$male^*$
				100	age/10				100	age/10
Point Estimate										
Monotone	1.891	-1.543	-0.165	0.011	0.058					
Poisson	-1.211	0.938	0.969	-0.072	-0.487	2.232	-1.444	0.120	0.005	-0.254
GOP	-1.134	1.439	0.780	-0.033	-0.617	2.204	-1.212	0.053	0.020	-0.309
Standard Deviation										
Monotone	0.396	0.407	0.124	0.010	0.107					
Poisson	2.077	1.967	0.620	0.033	0.542	1.874	1.739	0.570	0.030	0.482
GOP	1.230	1.251	0.369	0.029	0.314	0.888	0.957	0.260	0.021	0.236

1st, 2nd, 3rd: the first passenger class, the second passenger class, and the third passenger class. The first class is chosen as the baseline.

Predicted probability via Monotone

Female Male UNIVERSITY of WASHINGTON

Fitted Probability of Death

81

80

Predicted probability via Monotone

UNIVERSITY of WASHINGTON

Four Models Estimating the Variation in the Relative Risk of Death

- Binary outcome: Death=1, survival = 0
- Treatment: Passenger class (1st, 2nd, 3rd; 1st is the baseline)
- Covariates: age, sex, age², sex*age

Table 3. Coefficient estimates via different models

	2nd	2nd*	$2nd^*$	$2nd^*$	$2nd^*$	3rd	3rd*	3rd*	3rd*	3rd*
		male	age/10	$age^2/$	$male^*$		male	age/10	$age^2/$	$male^*$
				100	age/10				100	age/10
Point Estimate										
Monotone	1.891	-1.543	-0.165	0.011	0.058					
Poisson	-1.211	0.938	0.969	-0.072	-0.487	2.232	-1.444	0.120	0.005	-0.254
GOP	-1.134	1.439	0.780	-0.033	-0.617	2.204	-1.212	0.053	0.020	-0.309
Standard Deviation	n									
Monotone	0.396	0.407	0.124	0.010	0.107					
Poisson	2.077	1.967	0.620	0.033	0.542	1.874	1.739	0.570	0.030	0.482
GOP	1.230	1.251	0.369	0.029	0.314	0.888	0.957	0.260	0.021	0.236

1st, 2nd, 3rd: the first passenger class, the second passenger class, and the third passenger class. The first class is chosen as the baseline.

Table 3. Coefficient estimates via different models

	2nd	$2nd^*$	$2nd^*$	$2nd^*$	$2nd^*$	3rd	3rd*	3rd*	3rd*	3rd*
		male	age/10	$age^2/$	$male^*$		male	age/10	$age^2/$	$male^*$
				100	age/10				100	age/10
Point Estimate										
Monotone	1.891	-1.543	-0.165	0.011	0.058					
Poisson	-1.211	0.938	0.969	-0.072	-0.487	2.232	-1.444	0.120	0.005	-0.254
GOP	-1.134	1.439	0.780	-0.033	-0.617	2.204	-1.212	0.053	0.020	-0.309
Standard Deviation	1									
Monotone	0.396	0.407	0.124	0.010	0.107					_
Poisson	2.077	1.967	0.620	0.033	0.542	1.874	1.739	0.570	0.030	0.482
GOP	1.230	1.251	0.369	0.029	0.314	0.888	0.957	0.260	0.021	0.236

1st, 2nd, 3rd: the first passenger class, the second passenger class, and the third passenger class. The first class is chosen as the baseline.

Table 3. Coefficient estimates via different models

	2nd	$2nd^*$	$2nd^*$	$2nd^*$	$2nd^*$	3rd	3rd*	3rd*	$3rd^*$	3rd*
		male	age/10	$age^2/$	$male^*$		male	age/10	$age^2/$	$male^*$
				100	age/10				100	age/10
Point Estimate										
Monotone	1.891	-1.543	-0.165	0.011	0.058					
Poisson	-1.211	0.938	0.969	-0.072	-0.487	2.232	-1.444	0.120	0.005	-0.254
GOP	-1.134	1.439	0.780	-0.033	-0.617	2.204	-1.212	0.053	0.020	-0.309
Standard Deviation	1									
Monotone	0.396	0.407	0.124	0.010	0.107					
Poisson	2.077	1.967	0.620	0.033	0.542	1.874	1.739	0.570	0.030	0.482
GOP	1.230	1.251	0.369	0.029	0.314	0.888	0.957	0.260	0.021	0.236

1st, 2nd, 3rd: the first passenger class, the second passenger class, and the third passenger class. The first class is chosen as the baseline.

UNIVERSITY of WASHINGTON

88

Summary

- Two novel methods to model multiplicative treatment effects with a binary outcome.
- The first method relies on a monotonic treatment effect assumption.
- The second one proposes an alternative approach that involves a novel generalized odds product model.

Discussion

- Model 1 cannot be applied if the relative risk is not monotonic in treatment.
 - Exploratory data analysis
 - Substantive knowledge
- Model 2 is more flexible than Model 1, but has *K*-times as many parameters.

Thank you!!!

W

UNIVERSITY of WASHINGTON

Reference

- Lumley, Thomas; Kronmal, Richard; and Ma, Shuangge (July 2006), "Relative Risk Regression in Medical Research: Models, Contrasts, Estimators, and Algorithms", UW Biostatistics Working Paper Series. Working Paper 293.
- Sander Greenland; James M. Robins; Judea Pearl, "Confounding and collapsibility in causal inference" (Feb. 1999), Statistical Science, Vol. 14, No. 1, 29-46.
- Thomas S. Richardson, James M. Robins & Linbo Wang (2017) "On Modeling and Estimation for the Relative Risk and Risk Difference", Journal of the American Statistical Association, 112:519, 1121-1130.
- Abrahim Al-Mamgani, Wim L. J. van Putten, Wilma D. Heemsbergen, Geert J. L. H. van Leenders, Annerie Slot, Michel F. H. Dielwart, Luca Incrocci, Joos V. Lebesque, "Update of Dutch multicenter dose-escalation trial of radiotherapy for localized prostate cancer", Int J Radiat Oncol Biol Phys. 2008 Nov 15; 72(4): 980–988.
- Easterlin, Richard A, (2001), Income and Happiness: Towards an Unified Theory, *Economic Journal*, 111, issue 473, p. 465-84.