## Fully Nonparametric Method for Clustered Data and Multivariate Data

#### Yue Cui

Department of Statistics University of Kentucky

yue.cui@uky.edu

October 05, 2019

## Overview

#### Motivating Example

- ARTIS Data
- Analytics Strategies

#### 2 Item-by-Item Analysis with Clustering

- Partially Complete Clustered Data
- Nonparametric Model
- Numeric Results
- Analysis of ARTIS Data
- Joint Multivariate Analysis
  - Nonparametric Model
  - Numeric Results
  - Analysis of ARTIS Data
  - General Missing Patterns
- 4 Conclusions and Summary

#### Motivating Example

tem-by-Item Analysis with Clustering Joint Multivariate Analysis Conclusions and Summary References

ARTIS Data Analytics Strategies

## Motivating Example

ARTIS Data Analytics Strategies

## Asthma Randomized Trial of Indoor Wood Smoke (ARTIS)

#### Figure 1: Trial Profile of ARTIS



• Pediatric Asthma Quality of Life Questionnaire (PAQLQ)

• **Question**: Does air filter intervention improve quality-of-life measures for kids with asthma?

ARTIS Data Analytics Strategies

## More on ARTIS Data

- Answers to questionnaire questions: 1,2,3,4,5,6,7.
- Among all 42 homes in air-filter group, 4 of them have at least 2 kids who participate in the trial.
- At most 4 visits were made per kid both before and after air-filter intervention.
- A considerable portion of kids may miss some even all visits either before or after intervention, i.e. not all kids have data paired pre/post-intervention.
- Multiple visits on each kid before and after intervention are correlated.

#### Motivating Example

m-by-Item Analysis with Clustering Joint Multivariate Analysis Conclusions and Summary References

ARTIS Data Analytics Strategies

## Analytics Strategies

- Item-by-item analysis with clustering.
- Joint analysis.

Partially Complete Clustered Data Nonparametric Model Numeric Results Analysis of ARTIS Data

#### Item-by-Item Analysis with Clustering

Partially Complete Clustered Data Nonparametric Model Numeric Results Analysis of ARTIS Data

#### Table 1: Schematic representation.

| Intervention      | Pre-           | Post-     |
|-------------------|----------------|-----------|
| Distribution      | $F_1$          | $F_2$     |
| 1                 | <i>xx</i>      | <i>xx</i> |
| •                 | ÷              | ÷         |
| n <sub>c</sub>    | <i>xx</i>      | <i>xx</i> |
| $n_c + 1$         | <i>xx</i>      |           |
| •                 | ÷              |           |
| $n_c + n_1$       | <i>xx</i>      |           |
| $n_c + n_1 + 1$   |                | <i>xx</i> |
| •                 |                | ÷         |
| $n_c + n_1 + n_2$ |                | <i>xx</i> |
| Count             | N <sub>1</sub> | $N_2$     |

- Keep one kid per household (randomly selected).
- Each kid serves as a cluster.
- Assume all visits follow the same distribution in each intervention period.

Partially Complete Clustered Data Nonparametric Model Numeric Results Analysis of ARTIS Data

## Statistical Model

• Data from  $g^{th}$  treatment and  $j^{th}$  cluster

$$\mathbf{X}_{gj}^{(c)} = (X_{gj}^{(c)(1)}, \cdots, X_{gj}^{(c)(m_{gj}^{(c)})})^T$$

$$\mathbf{X}_{gj}^{(i)} = (X_{gj}^{(i)(1)}, \cdots, X_{gj}^{(i)(m_{gj}^{(i)})})^T$$

for the complete and incomplete cases where

$$X^{(c)(d)}_{gj} \sim {\it F_g}$$
 and  $X^{(i)(d)}_{gj} \sim {\it F_g}$ 

under assumption of MCAR.

- Cluster sizes are  $m_{gj}^{(c)}$  and  $m_{gj}^{(i)}$  for g = 1, 2.
- No assumption on intra-cluster dependence within or across treatment groups.

Partially Complete Clustered Data Nonparametric Model Numeric Results Analysis of ARTIS Data

## Statistical Model Cont'd

• The nonparametric effect size is

$$p = \int F_1 dF_2 = P(X_{11}^{(1)} < X_{22}^{(1)}) + \frac{1}{2}P(X_{11}^{(1)} = X_{22}^{(1)}).$$

- If p < <sup>1</sup>/<sub>2</sub>, observations generated from distribution F<sub>2</sub> tend to be smaller than observations generated from distribution F<sub>1</sub>.
- Similar results when  $p > \frac{1}{2}$ .
- If  $p = \frac{1}{2}$ , observations generated from  $F_1$  and  $F_2$  are tendentiously equal.
- No treatment effect  $\rightleftharpoons H_0 : p = \frac{1}{2}$ .
- Nonparametric Behrens-Fisher problem is addressed since

$$H_0: p = \frac{1}{2} \Rightarrow F_1 = F_2$$

Partially Complete Clustered Data Nonparametric Model Numeric Results Analysis of ARTIS Data

#### Nonparametric Behrens-Fisher Problem Illustration



Partially Complete Clustered Data Nonparametric Model Numeric Results Analysis of ARTIS Data

## Estimating Nonparametric Effect p

• Plug-in weighted estimator of p is

$$\widehat{p}^{(\phi)} = \int \widehat{F}_1^{(\phi)} d\widehat{F}_2^{(\phi)}.$$

• An example of weight is

$$\phi_{gj}^{(c)} = \frac{m_{gj}^{(c)}}{N_g} \quad \text{and} \quad \phi_{gj}^{(i)} = \frac{m_{gj}^{(i)}}{N_g}.$$

• The estimator takes the form

$$\widehat{p}^{(\phi)} = \frac{1}{N_1 N_2} \cdot \text{weighted sum of} \left\{ \sum_{d=1}^{m_{1j}^{(A)}} \sum_{d'=1}^{m_{2j'}^{(B)}} c(X_{2j'}^{(B)(d')} - X_{1j}^{(A)(d)}) \right\}$$

where  $A, B \in \{c, i\}$  and  $c(x) = 0, \frac{1}{2}, 1$  if x < 0, x = 0, x > 0 is the normalized comparison function.

Partially Complete Clustered Data Nonparametric Model Numeric Results Analysis of ARTIS Data

#### Assumptions

#### Assumption 1

$$0 \leq m_{gj}^{(A)} \leq M < \infty$$
 for  $g = 1, 2$ ,  $A \in \{c, i\}$ , where  $M$  is some constant.

#### Assumption 2

$$n o \infty$$
 such that  $rac{n}{n_c} < \infty$  or  $rac{n}{n_g} < \infty$  for  $g = 1, 2$ .

Note: Assumption 2 covers the practical-oriented patterns of sample sizes below:

(i) 
$$n_c \leq K < \infty$$
 and  $n_1, n_2 \to \infty$   
(ii)  $n_c \to \infty$  but  $n_1, n_2 \leq K < \infty$   
(iii)  $n_c, n_1 \to \infty$  but  $n_2 \leq K < \infty$   
(iv)  $n_c, n_2 \to \infty$  but  $n_1 \leq K < \infty$ 

Partially Complete Clustered Data Nonparametric Model Numeric Results Analysis of ARTIS Data

## Asymptotic Theory

#### Theorems (Cui and Harrar, 2019b)

Under Assumption 1 and 2,

•  $E(\hat{p}^{(\phi)}) = p + O(\frac{n_c}{N_1 N_2})$ 

• 
$$\widehat{p}^{(\phi)} \stackrel{a.s.}{\rightarrow} p$$

• 
$$\sqrt{N}(\widehat{p}^{(\phi)} - p) \xrightarrow{D} N(0, \sigma^{2(\phi)})$$
 where

$$\sigma^{2(\phi)} = \lambda_1^{(\phi)} \sigma_1^{2(\phi)} + \lambda_2^{(\phi)} \sigma_2^{2(\phi)} + \lambda_c^{(\phi)} \sigma_c^{2(\phi)}$$

and  $\sigma_s^{2(\phi)}$  depends on  $F_1$  and  $F_2$  for  $s \in \{1, 2, c\}$ .

Partially Complete Clustered Data Nonparametric Model Numeric Results Analysis of ARTIS Data

#### Test Procedures

Theorem (Cui and Harrar, 2019b)

Under Assumption 2,

$$\widehat{\sigma}^{2(\phi)} \xrightarrow{L_2} \sigma^{2(\phi)}.$$

• For large sample sizes, under  $H_0: p = \frac{1}{2}$ ,

$$T=\sqrt{N}rac{\widehat{
ho}^{(\phi)}-1/2}{\widehat{\sigma}^{(\phi)}}
ightarrow {\sf N}(0,1).$$

• For small sample sizes, under  $H_0: p = \frac{1}{2}$ ,

$$T_{app} = \sqrt{N} \frac{\hat{p}^{(\phi)} - 1/2}{\hat{\sigma}^{(\phi)}} \approx t_{v}$$
  
where  $v = \frac{(\frac{\hat{\sigma}_{c}^{2(\phi)}}{n_{c}^{2}} + \frac{\hat{\sigma}_{1}^{2(\phi)}}{N_{1}^{2}} + \frac{\hat{\sigma}_{2}^{2(\phi)}}{N_{2}^{2}})^{2}}{(\frac{\hat{\sigma}_{c}^{2(\phi)}}{n_{c}^{2}})^{2}/(n_{c}-1) + (\frac{\hat{\sigma}_{1}^{2(\phi)}}{N_{1}^{2}})^{2}/(n_{1}-1) + (\frac{\hat{\sigma}_{2}^{2(\phi)}}{N_{2}^{2}})^{2}/(n_{2}-1)}.$ 

Partially Complete Clustered Data Nonparametric Model Numeric Results Analysis of ARTIS Data

#### Simulation Results

Table 2: Type-I Error Rate(×100), Discretized Multivariate Normal,  $n_c = 10$ ,  $n_1 = 20$  and  $n_2 = 10$  ( $\alpha = 0.05$ )

| $m_{gj}^{(A)}$        | $\rho_1$ | $\rho_2$ | $\rho_{12}$ | $\sigma_1^2$ | $\sigma_2^2$ | Т   | T <sub>app</sub> |
|-----------------------|----------|----------|-------------|--------------|--------------|-----|------------------|
|                       | 0.0      | 0.0      | 0.1         | 1            | 1            | 9.2 | 7.6              |
|                       | 0.9      | 0.9      | 0.1         | T            | 5            | 7.8 | 6.5              |
| $Pinom(202) \mid 1$   | 0.1      | 0.0      | 0.0         | 1            | 1            | 6.7 | 4.6              |
| Binom(2,0.3)+1        | 0.1      | 0.1 0.9  | 0.9         | T            | 5            | 8.2 | 5.8              |
|                       | 0.1      | 0.1      | 1 0.9       | 1            | 1            | 7.1 | 5.3              |
|                       | 0.1      | 0.1      |             |              | 5            | 8.9 | 6.8              |
|                       | 0.0      | 0.0      | 0.1         | 1            | 1            | 6.7 | 5.7              |
|                       | 0.9      | 0.9      | 0.1         | T            | 5            | 8.5 | 6.7              |
| $Pinom(0,0,2) \mid 1$ | 0.1      | 0.0      | 0.0         | 1            | 1            | 7.7 | 5.3              |
| Binom(9,0.3)+1        | 0.1      | 0.9      | 0.9         | T            | 5            | 8.9 | 6.5              |
|                       | 0.1      | 0.1      | 0.0         | 1            | 1            | 7.2 | 5.3              |
|                       | 0.1 0.1  |          | 0.9         | T            | 5            | 6.7 | 4.9              |

Partially Complete Clustered Data Nonparametric Model Numeric Results Analysis of ARTIS Data

#### Simulation Results Cont'd

Table 3: Type-I Error Rate(×100), Multivariate Cauchy Distribution,  $n_c = 10$ ,  $n_1 = 20$  and  $n_2 = 10$  ( $\alpha = 0.05$ )

| $m_{gj}^{(A)}$        | $\rho_1$ | $\rho_2$ | $\rho_{12}$ | $\sigma_1^2$ | $\sigma_2^2$ | Т   | T <sub>app</sub> |
|-----------------------|----------|----------|-------------|--------------|--------------|-----|------------------|
|                       | 0.0      | 0.0      | 0.1         | 1            | 1            | 6.3 | 5.2              |
|                       | 0.9      | 0.9      | 0.1         | T            | 5            | 6.7 | 5.9              |
| $Pinom(202) \mid 1$   | 0.1      | 0.0      | 0.0         | 1            | 1            | 6.2 | 5.6              |
| Binom(2,0.3)+1        | 0.1      | 0.1 0.9  | 0.9         | T            | 5            | 8.8 | 7.3              |
|                       | 0.1      | 0.1      | 0.9         | 1            | 1            | 6.3 | 4.7              |
|                       | 0.1      | 0.1      |             |              | 5            | 7.2 | 5.3              |
|                       | 0.0      | 0.0      | 0.1         | 1            | 1            | 6.7 | 5.9              |
|                       | 0.9      | 0.9      | 0.1         | T            | 5            | 7.7 | 6.5              |
| $Pinom(0,0,2) \mid 1$ | 0.1      | 0.1      | 0.0         | 1            | 1            | 6.8 | 5.4              |
| Binom(9,0.3)+1        | 0.1      | 0.1      | J.I 0.9     | T            | 5            | 8.7 | 7.1              |
|                       | 0.1      | 0.0      | 0.0         | 1            | 1            | 7.7 | 5.9              |
|                       | 0.1 0.9  |          | 0.9         | T            | 5            | 6.4 | 4.8              |

Partially Complete Clustered Data Nonparametric Model Numeric Results Analysis of ARTIS Data

#### Simulation Results Cont'd

Table 4: Power(×100),  $n_c = 20$ ,  $n_1 = n_2 = 10$ ,  $\rho_1 = 0.1$ ,  $\rho_2 = \rho_{12} = 0.9$ ,  $F_1$  and  $F_2$  are linear combinations of CDFs of N(0,1) and N(-15,5)

| $m_{gj}^{(A)}$         | p     | Т     | T <sub>app</sub> |
|------------------------|-------|-------|------------------|
|                        | 0.5   | 5.3   | 4.4              |
|                        | 0.55  | 12.8  | 11.0             |
|                        | 0.6   | 32.0  | 30.2             |
| $Pinom(2,0,2) \mid 1$  | 0.65  | 56.8  | 54.6             |
| Binom(2,0.3)+1         | 0.7   | 82.4  | 80.8             |
|                        | 0.75  | 94.7  | 93.7             |
|                        | 0.8   | 99.5  | 99.5             |
|                        | 0.849 | 100.0 | 100.0            |
|                        | 0.5   | 7.0   | 6.1              |
|                        | 0.55  | 10.8  | 9.6              |
|                        | 0.6   | 31.3  | 29.1             |
| $P:norm(0,0,2) \mid 1$ | 0.65  | 59.1  | 56.8             |
| Binom(9,0.3)+1         | 0.7   | 82.2  | 80.1             |
|                        | 0.75  | 96.4  | 96.2             |
|                        | 0.8   | 99.4  | 99.2             |
|                        | 0.849 | 100.0 | 100.0            |

Partially Complete Clustered Data Nonparametric Model Numeric Results Analysis of ARTIS Data

#### Trial Profile of ARTIS

## Table 5: Summary Table for Measures on Selected Kids

|      | Family          | Events |
|------|-----------------|--------|
|      | Counts          | Count  |
| Pre  | Complete<br>35  | 79     |
|      | Incomplete<br>7 | 12     |
|      |                 |        |
| Post | Complete<br>35  | 78     |
|      | Incomplete<br>0 | 0      |

## Figure 2: Box plot of the Quality of Life scores for each domain.



Partially Complete Clustered Data Nonparametric Model Numeric Results Analysis of ARTIS Data

#### Tests on Domain Variables

#### Table 6: Summary Test Results for Domain Variables in ARTIS data.

| Domain                 | Test<br>Statistic | p-value | $\widehat{p}^{(\phi)}$ | 95%<br>Cl      |
|------------------------|-------------------|---------|------------------------|----------------|
| Activity<br>Limitation | 3.96              | 0.0003  | 0.604                  | (0.553, 0.656) |
| Emotional<br>Function  | 2.89              | 0.0057  | 0.579                  | (0.526, 0.633) |
| Symptoms               | 2.75              | 0.0060  | 0.580                  | (0.523, 0.637) |

Nonparametric Model Numeric Results Analysis of ARTIS Data General Missing Patterns

#### Joint Multivariate Analysis



Nonparametric Model Numeric Results Analysis of ARTIS Data General Missing Patterns

## Simple Missing Pattern (Brunner et al., 2002)

• Consider a clinical trial where *d* endpoints are assessed at two treatments:

| Treatment               |               | TX=1 |             |               | TX=2 |             |
|-------------------------|---------------|------|-------------|---------------|------|-------------|
| Component               | 1             |      | d           | 1             |      | d           |
| Distribution            | $F_{1}^{(1)}$ |      | $F_1^{(d)}$ | $F_{2}^{(1)}$ |      | $F_2^{(d)}$ |
| 1                       | x             |      | x           | x             |      | x           |
| :                       |               | ÷    |             |               | :    |             |
| n <sub>c</sub>          | x             |      | ×           | ×             |      | ×           |
| $n_1 + 1$               | х             |      | х           |               |      |             |
| :                       |               | ÷    |             |               |      |             |
| $n_{c} + n_{1}$         | ×             |      | ×           |               |      |             |
| $n_c + n_1 + 1$         |               |      |             | ×             |      | х           |
| :                       |               |      |             |               | :    |             |
| $n_{c} + n_{1} + n_{2}$ |               |      |             | х             |      | х           |

• Are the two treatments different on all component jointly?

Nonparametric Model Numeric Results Analysis of ARTIS Data General Missing Patterns

## Statistical Model

For the complete as well as incomplete data for k<sup>th</sup> subject of l<sup>th</sup> component in g<sup>th</sup> group

$$X_{gk}^{(c)(\ell)}, X_{gk'}^{(i)(\ell)} \stackrel{iid}{\sim} F_g^{(\ell)}$$

for g = 1, 2,  $k = 1, \ldots, n_c$ ,  $k' = 1, \ldots, n_g$  and  $\ell = 1, \ldots, d$ .

- The total number of subjects is *n*.
- Assumption 1 and 2 still apply here.
- No assumptions on dependence structures among components.

Nonparametric Model Numeric Results Analysis of ARTIS Data General Missing Patterns

• Derive nonparametric relative effect for each component, i.e. for  $\ell^{th}$  component,  $\ell = 1, \cdots, d$ ,

$$p^{(\ell)} := \int F_1^{(\ell)} dF_2^{(\ell)} = p(X_{11}^{(c)(\ell)} < X_{21}^{(c)(\ell)}) + \frac{1}{2}p(X_{11}^{(c)(\ell)} = X_{21}^{(c)(\ell)}).$$

• The plug-in estimator of  $p^{(\ell)}$ 

$$\widehat{p}^{(\ell)} = \int \widehat{F}_{1,\theta_1^{(\ell)}}^{(\ell)} d\widehat{F}_{2,\theta_2^{(\ell)}}^{(\ell)}.$$

• Nonparametric relative effect size vector:

$$\boldsymbol{p} = (p^{(1)}, \ldots, p^{(d)})'.$$

•  $H_0: \boldsymbol{p} = \frac{1}{2} \mathbf{1}_d$  v.s.  $H_a: \boldsymbol{p} \neq \frac{1}{2} \mathbf{1}_d$ .

Nonparametric Model Numeric Results Analysis of ARTIS Data General Missing Patterns

#### Theoretical Results

#### Assumption 3

Let  $\lambda_1, \ldots, \lambda_d$  denote eigenvalues of  $V_n = \operatorname{Cov}(\sqrt{n}(\hat{\boldsymbol{\rho}} - \frac{1}{2}\mathbf{1}_d))$  and let  $\lambda_{\min} = \min\{\lambda_1, \ldots, \lambda_d\}$  denote the smallest eigenvalue, then

$$\lambda_{\textit{min}} \geq \lambda_0 > 0$$

where  $\lambda_0$  is some constant.

Theorems (Cui and Harrar, 2019a)

Under Assumption 1,2 and 3,

• 
$$E(\widehat{\boldsymbol{p}}) = \boldsymbol{p} + O(\frac{n_c}{m_1 m_2})$$
 where  $m_g = n_c + n_g$  for  $g = 1, 2$ 

• 
$$||\widehat{\boldsymbol{p}} - \boldsymbol{p}||_2 = O(\frac{1}{n})$$

• 
$$\sqrt{n}(\widehat{\boldsymbol{p}} - \frac{1}{2}\mathbf{1}_d) \stackrel{D}{\rightarrow} N(\mathbf{0}, \boldsymbol{V}_n)$$

Nonparametric Model Numeric Results Analysis of ARTIS Data General Missing Patterns

#### **Test Procedures**

Under Assumption 3 and Theorems (Cui and Harrar, 2019a),

• For large sample sizes, under the null hypothesis  $H_0: \boldsymbol{p} = \frac{1}{2} \mathbf{1}_d$ ,

$$Q_n = n \cdot (\widehat{\boldsymbol{p}} - \frac{1}{2} \mathbf{1}_d)' \widehat{\boldsymbol{V}}_n^{-1} (\widehat{\boldsymbol{p}} - \frac{1}{2} \mathbf{1}_d) \sim \chi_d^2.$$

• For small sample sizes, under the null hypothesis  $H_0: \boldsymbol{p} = \frac{1}{2} \mathbf{1}_d$ ,

$$F_n = \frac{n}{tr(\widehat{\boldsymbol{V}}_n)} (\widehat{\boldsymbol{\rho}} - \frac{1}{2} \mathbf{1}_d)' (\widehat{\boldsymbol{\rho}} - \frac{1}{2} \mathbf{1}_d) \sim F(\widehat{F}, \infty)$$

where  $\widehat{F} = \frac{[tr(\widehat{V}_n)]^2}{tr(\widehat{V}_n^2)}$ .

Nonparametric Model Numeric Results Analysis of ARTIS Data General Missing Patterns

# Table 7: Type-I error rates after multiple imputation with 5 chains, sample sizes are $n_c = n_2 = 30$ and $n_1 = 10$ . $\alpha = 0.05$ .

|                               |                            | Rounded<br>Multivariate<br>Normal |     |                                                | Multivariate<br>Log-Normal |     |     | Multivariate<br>Cauchy |      |     |                  |
|-------------------------------|----------------------------|-----------------------------------|-----|------------------------------------------------|----------------------------|-----|-----|------------------------|------|-----|------------------|
| $(\rho_1, \rho_2, \rho_{12})$ | $(\sigma_1^2, \sigma_2^2)$ | d                                 | Qn  | Q <sub>n</sub> F <sub>n</sub> Multi-<br>Impute |                            | Qn  | Fn  | Multi-<br>Impute       | Qn   | Fn  | Multi-<br>Impute |
|                               |                            | 2                                 | 7.3 | 6.1                                            | 5.6                        | 6.6 | 5.6 | 4.9                    | 7.2  | 6.3 | 2.8              |
|                               | (1,1)                      | 3                                 | 6.2 | 5.4                                            | 6.2                        | 5.8 | 4   | 6.1                    | 8.9  | 6.2 | 3.2              |
| (04.04.04)                    |                            | 5                                 | 7.4 | 4.6                                            | 6.4                        | 8.7 | 4.5 | 4.7                    | 10.5 | 5.5 | 1.3              |
| (-0.+,-0.+,-0.+)              |                            | 2                                 | 7.1 | 6.7                                            | 6.5                        | 5.6 | 4.7 | 69.4                   | 6.7  | 5   | 2.3              |
|                               | (1,5)                      | 3                                 | 8.5 | 6.8                                            | 7.7                        | 6.9 | 5.3 | 76.4                   | 6.3  | 4.3 | 2.7              |
|                               |                            | 5                                 | 8.2 | 4.8                                            | 7.8                        | 7.5 | 4.8 | 93.2                   | 8.6  | 4.5 | 1.1              |
|                               |                            | 2                                 | 6.4 | 5.4                                            | 6.7                        | 4.7 | 4.5 | 6.9                    | 7.2  | 6.7 | 2.8              |
|                               | (1,1)                      | 3                                 | 7.1 | 5.5                                            | 5.4                        | 6.6 | 5.6 | 5.9                    | 6.4  | 4.9 | 2.2              |
| (040404)                      |                            | 5                                 | 8.1 | 5.1                                            | 5.7                        | 9.9 | 6.4 | 6.1                    | 8.7  | 5.5 | 1.2              |
| (0.4,0.4,0.4)                 |                            | 2                                 | 4.6 | 4.6                                            | 6.8                        | 6.1 | 5.1 | 69.2                   | 6.7  | 5.1 | 2.3              |
|                               | (1,5)                      | 3                                 | 6.2 | 5.9                                            | 5.6                        | 6.4 | 6.1 | 78.9                   | 7.2  | 6.2 | 1.2              |
|                               |                            | 5                                 | 9.1 | 6.0                                            | 5.8                        | 8.9 | 7.5 | 84.1                   | 10.1 | 5.9 | 1.2              |

Motivating Example Joint Multivariate Analysis Conclusions and Summary References

~ ~

Numeric Results

#### Simulation Results Cont'd

Table 8: Obtained power after multiple imputation with 5 chains, sample

- -

| size | sizes are $n_c = n_2 = 30$ and $n_1 = 10$ . |                                 |            |            |      |      |                     |  |  |  |
|------|---------------------------------------------|---------------------------------|------------|------------|------|------|---------------------|--|--|--|
|      | $(\rho_1, \rho_2, \rho_{12})$               | $(\sigma_1^2, \sigma_2^2)^{-1}$ | $\delta_1$ | $\delta_2$ | Qn   | Fn   | Multiple Imputation |  |  |  |
|      |                                             |                                 | 0          | 0.3        | 20.7 | 17.9 | 20.2                |  |  |  |
|      |                                             |                                 | 0.3        | 0.3        | 40.5 | 34.7 | 37.8                |  |  |  |
|      |                                             | (1.1)                           | 0.6        | 0.6        | 93.8 | 92.6 | 94                  |  |  |  |
|      |                                             | (1,1)                           | 0.9        | 0.9        | 99.9 | 100  | 99.9                |  |  |  |
|      |                                             |                                 | 0.3        | 0.6        | 80.9 | 78.1 | 77.5                |  |  |  |
|      | (-0.4 - 0.4 - 0.4)                          |                                 | 0.3        | 0.9        | 97.6 | 96.6 | 96.9                |  |  |  |
|      | ( 0.4, 0.4, 0.4)                            |                                 | 0          | 0.3        | 11.8 | 9.9  | 10.9                |  |  |  |
|      |                                             |                                 | 0.3        | 0.3        | 19.5 | 16.5 | 20.6                |  |  |  |
|      |                                             | (15)                            | 0.6        | 0.6        | 56   | 49.5 | 59.6                |  |  |  |
|      |                                             | (1,5)                           | 0.9        | 0.9        | 90.6 | 87.5 | 93.8                |  |  |  |
|      |                                             |                                 | 0.3        | 0.6        | 38   | 33.4 | 43.7                |  |  |  |
|      |                                             |                                 | 0.3        | 0.9        | 64.8 | 59.1 | 66.7                |  |  |  |
|      |                                             |                                 | 0          | 0.3        | 28.9 | 25.7 | 28.7                |  |  |  |
|      |                                             |                                 | 0.3        | 0.3        | 45.5 | 50   | 46.8                |  |  |  |
|      |                                             | (1.1)                           | 0.6        | 0.6        | 98   | 98.7 | 96.8                |  |  |  |
|      |                                             | (1,1)                           | 0.9        | 0.9        | 100  | 100  | 100                 |  |  |  |
|      |                                             |                                 | 0.3        | 0.6        | 88.2 | 89.7 | 86.3                |  |  |  |
|      | (0 4 0 4 0 4)                               |                                 | 0.3        | 0.9        | 99.8 | 99.6 | 99.6                |  |  |  |
|      | (0.4,0.4,0.4)                               |                                 | 0          | 0.3        | 12.5 | 11.2 | 13.2                |  |  |  |
|      |                                             |                                 | 0.3        | 0.3        | 19.8 | 19.7 | 20.7                |  |  |  |
|      |                                             | (15)                            | 0.6        | 0.6        | 60   | 64   | 65.2                |  |  |  |
|      |                                             | (1,5)                           | 0.9        | 0.9        | 91.5 | 92.9 | 92.9                |  |  |  |
|      |                                             |                                 | 0.3        | 0.6        | 43.2 | 45   | 46.6                |  |  |  |
|      |                                             |                                 | 0.3        | 0.9        | 74.5 | 75.5 | 79.1                |  |  |  |

Yue Cui WSDS 2019

Nonparametric Model Numeric Results Analysis of ARTIS Data General Missing Patterns

#### Tests on Domain Variables

#### Table 9: Summary Test Results for Domain Variables in ARTIS

|                        | All      |        |                |          | Complete | Multiple<br>Imputation |         |
|------------------------|----------|--------|----------------|----------|----------|------------------------|---------|
| Domain                 | <b>p</b> | Qn     | F <sub>n</sub> | <b>p</b> | Qn       | Fn                     | p-value |
| Activity<br>Limitation | 0.581    | <0.001 | <0.001         | 0.564    | <0.001   | <0.001                 | 0 222   |
| Emotional<br>Function  | 0.568    | <0.001 | <0.001         | 0.581    | <0.001   | <0.001                 | 0.322   |
| Symptoms               | 0.545    |        |                | 0.567    |          |                        |         |

Nonparametric Model Numeric Results Analysis of ARTIS Data General Missing Patterns

### Flexible Missing Patterns

#### • Example of d = 2, ? represents missing value.

| Treatment    | ТХ            | =1            | ТХ            | =2          |
|--------------|---------------|---------------|---------------|-------------|
| Component    | 1             | 2             | 1             | 2           |
| Distribution | $F_{1}^{(1)}$ | $F_{1}^{(2)}$ | $F_{2}^{(1)}$ | $F_2^{(2)}$ |
| 1            | x             | x             | x             | x           |
| 2            | ?             | x             | x             | x           |
| 3            | x             | ?             | x             | x           |
| 4            | x             | x             | ?             | x           |
| 5            | x             | x             | x             | ?           |
| 6            | ?             | ?             | x             | х           |
| 7            | ?             | x             | ?             | x           |
| 8            | ?             | x             | x             | ?           |
| 9            | x             | ?             | ?             | x           |
| 10           | x             | ?             | x             | ?           |
| 11           | x             | x             | ?             | ?           |
| 12           | x             | ?             | ?             | ?           |
| 13           | ?             | x             | ?             | ?           |
| 14           | ?             | ?             | x             | ?           |
| 15           | ?             | ?             | ?             | x           |

• For d > 2,  $2^{2d} - 1$  different missing patterns in total.

#### Conclusions and Summary

## Conclusions

- Accommodates binary, ordinal, discrete and continuous data seamlessly; allows meaningful probabilistic comparison of treatments with flexible and precise alternatives; provides numeric measurement of effect size.
- No assumptions needed on between-cluster or intra-cluster dependence structures.
- Favorable performance for data generated from different distributions and also for multiple cluster sizes settings.
- Introduce nonparametric test to comparisons between more than two groups and consider more missing structures.
- Propose a nonparametric test procedure which can be used directly to analyze ARTIS data and also consider about gender effect.

## References I

- Brunner, E., U. Munzel, and M. L. Puri (2002). The multivariate nonparametric behrens-fisher problem. *Journal of Statistical Planning and Inference 108*, 37–533.
- Cui, Y. and S. W. Harrar (2019a). The multivariate nonparametric behrens-fisher problem.
- Cui, Y. and S. W. Harrar (2019b). Nonparametric behrens-fisher for partially complete dependent replicates.

# Thank you!