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Introduction



Graphical models
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Figure 1: Undirected Graph (UG), Directed Acyclic Graph (DAG), Completed Partially Directed

Acyclic Graph (CPDAG)

UG : P(X ) =
1

Z
ψ1(X1,X2)ψ2(X2,X3,X4)

DAG : P(X ) =
∏
Xv∈V

P(Xv | Xpa(Xv ))

= P(X1)P(X2 | X1)P(X3 | X2,X4)P(X4)
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Bayesian networks

• Indistinguishablility (Markov equivalence class)

e.g., V = {X1,X2,X3}, I (P) = {X1 ⊥ X3 | X2}

X1 X2 X3 X1 X2 X3

Figure 2: Markov Equivalence Class

• Large non-convex search space (NP-hard)

|Bp| =
∑p

i=1(−1)i+1
(
p
i

)
2i(p−i)|Bp−i |

|B14| = 1, 439, 428, 141, 044, 398, 334, 941, 790, 719, 839, 535, 103
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Recent works

• Annealing on Regularized Cholesky Score (ARCS)

• developed by Ye, Amini, and Zhou (2020) from UCLA

• f (L;P) = − log |L|+ tr(PSPTLLT ) +
∑

i>j ρθ(Lij)

• alternately minimize f with respect to Cholesky factor L and variable

ordering P with simulated annealing

• Sparsest Permutation (SP)

• developed by Raskutti and Uhler (2018) from UW-Madison & MIT

• lay down theoretical result that connects variable ordering and

sparsest Bayesian network

• Removal-Fill-Degree (RFD)

• developed by Squires, Amaniampong, and Uhler (2020) from MIT

• given undirected graph, recover the variable ordering based on

removal/fill scores

5



Recent works

• Annealing on Regularized Cholesky Score (ARCS)

• developed by Ye, Amini, and Zhou (2020) from UCLA

• f (L;P) = − log |L|+ tr(PSPTLLT ) +
∑

i>j ρθ(Lij)

• alternately minimize f with respect to Cholesky factor L and variable

ordering P with simulated annealing

• Sparsest Permutation (SP)

• developed by Raskutti and Uhler (2018) from UW-Madison & MIT

• lay down theoretical result that connects variable ordering and

sparsest Bayesian network

• Removal-Fill-Degree (RFD)

• developed by Squires, Amaniampong, and Uhler (2020) from MIT

• given undirected graph, recover the variable ordering based on

removal/fill scores

5



Recent works

• Annealing on Regularized Cholesky Score (ARCS)

• developed by Ye, Amini, and Zhou (2020) from UCLA

• f (L;P) = − log |L|+ tr(PSPTLLT ) +
∑

i>j ρθ(Lij)

• alternately minimize f with respect to Cholesky factor L and variable

ordering P with simulated annealing

• Sparsest Permutation (SP)

• developed by Raskutti and Uhler (2018) from UW-Madison & MIT

• lay down theoretical result that connects variable ordering and

sparsest Bayesian network

• Removal-Fill-Degree (RFD)

• developed by Squires, Amaniampong, and Uhler (2020) from MIT

• given undirected graph, recover the variable ordering based on

removal/fill scores

5



Our Method: FROSTY



FROSTY

FROSTY utilizes Robust Selection (RobSel), (Cisneros, Petersen, and

Oh, 2020) and sparse Choleksy algorithm called Approximate Minimum

Degree ordering (AMD), (Amestoy, Davis, and Duff, 1996).

Algorithm 1 Pseudocode for FROSTY

Input : Dataset X , confidence level α

Output: Bayesian network B

Step 1 : Estimate input undirected graph Θ

1: Set λ = RobSel(X , α)

2: Estimate Θλ with Graphical Lasso

3: Prune Θλ with conditional independence test

Step 2 : Recover DAG B

4: Lπ,Pπ = AMD(Θλ)

5: L = PT
π LπPπ and B = (LD − L)L−1

D

6: return B
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Robust selection

Let ℓ(Θ) be the Gaussian negative log-likelihood. Cisneros, Petersen, and

Oh (2020) show that

min
Θ

sup
P:Dc (P,Pn)≤λ

EP [ℓ(Θ)]︸ ︷︷ ︸
Distributionally Robust

Optimization (DRO) formulation

= min
Θ

{ℓ(Θ) + λ∥Θ∥1}︸ ︷︷ ︸
Graphical Lasso formulation

, (1)

Under the DRO formulation, the optimal regularization parameter can be

chosen by

λ = inf {λ > 0 : P0(Θ ∈ Cn(λ)) ≥ 1− α}. (2)

This can be efficiently computed by bootstrapping dataset X only.
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Robust selection

The interpretation of α in RobSel is recently shown in Tran et al. (2022):

P(having at least one false positive edge in Θ̂) ≤ α as n → ∞ (3)

In other words, the tuning parameter α in RobSel has a direct connection

to the asymptotic family-wise error rate of the zero-nonzero patterns.
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Topological ordering

Under multivariate Gaussian assumption, Θ = Σ−1 corresponds to the

undirected graph, which can be expressed as a function of B and

Ω = diag(ω2
1 , . . . , ω

2
p), the error variances of X1, . . . ,Xp:

Θ(B,Ω) = (I − B)Ω−1(I − B)T (4)

If we appropriately order the variables, say π = (π(1), . . . , π(p)),

Θπ(Bπ,Ωπ) = (I − Bπ)Ω
−1
π (I − Bπ)

T

= LDLT

= L̃L̃T (5)
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Approximate minimum degree ordering

Figure 3: The impact of variable ordering.
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Computational complexity

• RobSel: O(bnp2)

• Graphical lasso: O(p3)

• CI-testing: O(ns2 + s3)

• AMD: approximately O(|L|) ≪ O(p2)

where b is the number of boostrap samples, s is the average number of

nonzeros per row in Θ, and L is the Cholesky factor.

Note: one only needs to fit Graphical Lasso once.
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Simulation: empirical results



Performance metrics

All metrics are computed based on CPDAG, instead of DAG.

• Structural Hamming Distance, SHD ≥ 0

SHD = the number of edge changes (addition, deletion, reverse)

required to turn an estimated graph into the true graph

• Matthew’s Correlation Coefficient, −1 ≤ MCC ≤ 1

MCC = TP×TN−FP×FN√
(TP+FP)(TP+FN)(TN+FP)(TN+FN)
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Simulation results

Figure 4: Performance comparison for scale-free graphs.
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Simulation results

Figure 5: Performance comparison for Erdos-Renyi graphs.
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Simulation results

Figure 6: Performance comparison for Pathfinder network.

15



Simulation results

Method
Runtime (sec.)

p=100 p=200 p=500 p=1000 p=2000

FROSTY 0.12 0.28 1.39 5.52 33.69

RFD (RS) 0.86 6.52 168.62 2180.04 –

RFD (CV) 33.59 177.88 1817.85 14250.32 –

ARCS 57.52 101.47 562.56 5721.50 14581.00

Note: For p = 2000, RFD took up too much memory that it was not

feasible to run within our available memory space of 60GB.

Table 1: Runtime analysis
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Conclusion

• FROSTY is extremely scalable.

• For a large graph size of 2000 vertices, it estimates a Bayesian

network less than a minute.

• FROSTY is simple.

• There is only one tuning parameter α, as in (1− α)-confidence level

for undirected graph, which has a direct relation to the asymptotic

family-wise error rate of the zero-nonzero patterns.

• First step of FROSTY can improve other methods.

• Methods that take an undirected graph as an input can be

significantly improved by adapting FROSTY’s undirected graph

estimation step.
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Robust selection

λ = inf {λ > 0 : P0(Θ ∈ Cn(λ)) ≥ 1− α}
= inf {λ > 0 : P0(Rn(Θ) ≤ λ) ≥ 1− α}
= inf {λ > 0 : P0(∥vec(S −Θ−1)∥∞ ≤ λ) ≥ 1− α} (6)

where Cn(λ) is the confidence region for Θ and

Rn(Θ) = inf {Dc(P,Pn) :

EP [
∂

∂Θ′ (tr(SΘ
′)− log |Θ′|)

∣∣∣∣
Θ′=Θ

] = 0} (7)

is called the Robust Wasserstein Profile (RWP) function, which

represents the minimum distance between the empirical distribution and

any plausible distribution that satisfies the first order optimality condition

for the precision matrix Θ.



Undirected graph estimation

Figure 7: Undirected graph estimation comparison.
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