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Diffusion Tensor Imaging (DTI)

e DTI studies white matter of the brain

* Diffusion-Weighted Imaging (DWI) shows water movement
along the tissues and models the difference of signals
between baseline image and DWI image at b-value (i.e.,
b=1000)

Isotropic diffusion

S
ln(S—) — _ 2G25%(A — 6/3)D = — bD ZL
0
A
* The diffusion tensor D is used to measure the degree of /7

Credit. Mori 2007

anisotropy and structural orientation that characterizes DTI
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Existing DTI studies

e Both normal subjects and patients with
brain tumors, Alzheimer’s, schizophrenia,
etc.

 ROI Analysis, Voxel-Based Analysis, Z ’
Tract-Based Spatial Statistics (e.g., parcellation surgical targeting
traCtOg rap hy) Credit: Jbabdi and Johansen-Berg 2011

e Manual annotation of region by experts
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then we don’t have to depend on previous regions of interest (ROI) that
requires manual feature selection.



New question

 An important issue was not addressed in DTl studies.
Can we define a measure that distinguishes different groups?

 Assumption: If we find a measure that defines some good feature in DTI,
then we don’t have to depend on previous regions of interest (ROI) that
requires manual feature selection.

2 Holistic approach to brain images searching for patterns
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Mathematics of DTI

e Diffusion process by an ellipsoid
(Basser et al., 1994)

e Diffusion Tensor — A symmetric 3x3
matrix for each voxel

e Shape and orientation — eigenvalues
and corresponding eigenvectors

Dxx ny sz Vi /11 0 O_
D= (D, D, D, |l =1v2110 4 Of[V1 V2 V3]
_sz D, D, V3] |0 O /13_

Tensor
calculation

Measure diffusion along Shape and orientation
various directions (>6)

Fig. 5.2 A diffusion ellipsoid can be fully characterized from diffusion measurements along six
independent axes.

Credit: Mori 2007
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Mathematics of DTl

e Diffusion process by an ellipsoid
(Basser et al., 1994)

e Diffusion Tensor — A symmetric 3x3
matrix for each voxel

e Shape and orientation — eigenvalues
and corresponding eigenvectors

D XX ny sz _Vl /11 0 O_
D= (D, D, D, |l =1v2110 4 Of[V1 V2 V3]
_sz D, D, V3|0 O /13_

where A =

Free diffusion

-

v

Restricted diffusion

\//112+/122+/132

A+ Ay + Az
3

=MD

Isotropic diffusion

» @

Anisotropic diffusion
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ldeas for a new measure

1. Semi-variogram (Matheron, 1963)

b B )
= “L M + h) — fOMY2dV

10



deas for a new measure

1. Semi-variogram (Matheron, 1963) 2. Polycentric Circle Pooling (Qi et al.,
2020)

1
y(h) = — [fAM + h) — f(M)]*dV

j ! ‘ ) Convolutional feature maps Circle center for each pooling Concentric circle pooling

|4

Concatenate
subregion

pooling
features
(d)

2Rx2R bins generation
by pooling

=)

\
:

Variogram

B Experimental variogram data

= Variogram mod

Polycentric strategy

(a) (b)

Fig. 3. Example of the pooling strategy in PCP with four-channel maps of size 16 x 16 and five circle centers. The annular subregions are shown in different
(COI‘I‘ elated) (llllCOI‘l' elate d) colors, except for the dark gray indicating the exclusive cells.

10
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Central Peripheral Deviation (CPD)

Young at z=38 Senior at z=38

0 03 06 09 0 03 06 09

ICBM example: Age group difference in FA
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Definition of CPD

* CPD = pp — (U — pp) = 24y —

Ho— (Hy — Jp) 24y — iy

NN

where p JR" /00 JozjZ Jo f(r. O)rdrd6 JRI (. 0) =y} °dA JOM Jo! Lf(r,0) = py ) rdrdd
a ~ T (r; P = —
JRi 1f(r,(9)dA JOZ JOZ lf(r,(g)l’dl’d@

o SCPD =

=12,

IRl 1f(r,9)dA JOZ]T JO 8 lf(r,e)rdrdg

1 if f(r,0)>0

r, <r, = oo and 1f(rﬁ) — {O ¢ 0 =0
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Defi n iti O n Of C P D O 41,: mean FA for entire brain
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Defi n iti O n Of C P D O M- mean FA for entire brain
‘ HU,: mean FA for inner circle
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Defi n iti O n Of C P D O 41,: mean FA for entire brain

‘ HU,: mean FA for inner circle
* CPD = py — (g — pp) = 215 — iy

. @: variance FA for entire brain
oy — (U — o) B 24y — U
NG NG

2T (T _ 2 2 o1y 5
whore s W TCOL s J U0 A [0 — P
JRi lf(r,(g)dA JO27T ng lf(r,(g)rdrde

o SCPD =

=12,
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| if f(r,0) >0
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Convolutional Neural Network (CNN)

 Hierarchical layered representation learning

e A 2D representation via “back-propagation”

C1 51 CZ 52 n, n;
input feature maps feature mapsfeature mapsfeature maps output
32x32 28 x 28 14 x 14 10 x 10
l
\ L ﬁ/
55 N\ h I O
convolution N\ X2 3 | \\ O fuly N\
subsampling  convolution 2x2 connected

\ subsampling \\ \

feature extraction classification

Credit: kaggle.com
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Convolutional Neural Network (CNN)

* Find a set of values for the weights of all

layers In a network associated with targets ; l Layer l
Wi @
* Adjust the value of the weights in direction @ @ /"
of the lower cost (or loss) by an objective o B> 4 @ e
function, e.g., Binary Cross-Entropy ® | Q . (}

S
@

1 n "3 . o "
Loss = — — Z {yl- X log (p(yl-)) + (1 —y;) X log(l —P(yi)) } @
|

Multi-Layer Perceptron (MLP)

Credit: Algendy 2020.
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Applying CPD to CNN architecture

* Recent work on imaging data

- Application of CNN to automatic
segmentation of breast lesion in Ultra
Sound images (Costa et al., 2019)

15

Max-pooling 2x2

Pixel classification
Element-wise addition
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Proposed CNN architecture

20 1D 32 16 3 1

o4 64
128 128

2% 256
’-*-‘*I’I‘*‘#-’]l
v | (SRR [

LA L dL 4

Figure 4. The proposed network architecture using CPD. The upper layers describe the CNN and
the lower layers describe the MLP with 4 layers. The smaller the length of bar indicates the
smaller size of the images. The number on top of each bar represents the number of nodes at the
layer. The arrows with different colors represent different procedure as shown in the legend.

’ Conv3ix3, BatchNorm, TanH

. MaxPool 2x2

‘ Dropout 40%

m)> Full-connection

16



Proposed CNN architecture

e Key points of CNN+MLP with CPD
1. Adopt CNN: translation-invariant, spatial hierarchies for 2D images
2. Good features let you solve a problem with far less data

3. Training a simple, well regularized CNN model on a very small data set can
potentially suffice and yield reasonable results

- Simple: a small number of layers

- Well-regularized: an optimized L2-norm A value

17
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Example DTI studies

e Study 1: Maryland MagNeTS prospective study from FITBIR
- Traumatic Brain Injury (TBI) patients with baseline brain images
- Access only DTl images (n=82) and estimate tensor information

e Study 2: International Consortium for Brain Mapping (ICBM) from LONI
- Normal subjects’ brain images for developing a MNI atlas template

- Access only DTl images (n=192) and estimate tensor information

19



Training the model

* |nput (X): DTl images and CPD
e Output (Y): Binary age group (Age < 52 or > 52)

» Split data into training data and test data at ratio 80:20

20



Improved test accuracy on proposed model
Results from MagNeTS data

Table 3. The models with best test accuracies for the CNN method alone and the CNN + MLP

method using the MagNeTS data.

Model Input MLP Radius A values Training Training  Test loss Test
data design loss accuracy accuracy
4 (ﬂ’mlp > ﬂ’cnn )
CNN Image (NA, 3) 293.1302  0.7005  292.5994  0.6250
CNN+MLP Image, 2layers 5 (0.01,0.5)  51.3255 0.6973 51.5627 0.7083
unscaled 15 (0.1,0.5) 52.6860 0.7582 51.3741 0.7083
CPDs 5,15 (0.01,0.5)  51.3449 0.7659 50.8401 0.7083
4 layers 5 (1,0.5) 70.7909 0.7183 70.9441 0.7083
15 (0.1,0.5) 53.2396 0.7872 52.6477 0.7500
5,15 (0.01,0.5)  52.0297 0.8125 51.9336 0.7500
Image, 2layers 5 (1,0.5) 0.7184 0.7414 0.7625 0.7083
scaled 15 (0.05,0.5) 0.8342 0.7586 0.8405 0.7083
CPDs 5,15 (0.1,0.5) 1.6615 0.7241 1.6553 0.7500
4 layers 5 (0.01,0.5) 1.4807 0.7414 1.5009 0.7083
15 (1,0.5) 1.4562 0.7414 1.4908 0.7083
5,15 (0.1,0.5) 2.4740 0.7069 2.4500 0.7500

21



Improved test accuracy on proposed model
Results from ICBM data

Table 5. The models with best test accuracies for the CNN method alone and the CNN + MLP
method using the ICBM data. We train the CNN + MLP model with both CPDs and CPD;s.
Complete data rate indicates the threshold percentage of available FA values inside the basis circle
from the center image. For example, 70% indicates the images where 70% or greater of FA values
are available 1nside circles at both radii.

Model Input data  Complete A values Training Training Test loss Test
data rate ( Z’m]p , Cnn) loss accuracy accuracy
CNN Image (NA,0.1) 11.3143 0.7188 12.3710 0.6379
CNN+MLP Image, 70% (3,0.1) 56.6895 0.7031 56.7059 0.6897
e MO oo (0,01) 131572 06493 156420  0.6379
Image, 70% (3,0.1) 50.2584 0.7031 49.8063 0.6897
2%1;;1 E‘S’tﬁc s (0.01,01) 112429 0.7463 124016  0.6724
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New paradigm for DTI study

» Our consideration of algebraic variants for brain’s characteristic may complement
information not revealed through CNN'’s feature selection
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New paradigm for DTI study

» Our consideration of algebraic variants for brain’s characteristic may complement
information not revealed through CNN'’s feature selection

Advantages

Disadvantages

A. No experts’ opinion to search for regions

B. CPD may not require very crisp images

C. CPD may complement information not
revealed by CNN'’s feature selection

A. Need more physiologically relevant
representation

B. Data size is not enough for generalization

24



New paradigm for DTI study

e Future work
1. Extend it to multi-centric peripheral deviation

2. Apply it to 3D in order to verity justification of 2D approach

3. Find the best criteria for A — change in each layer

4. Use other diffusion coefficients such as Mean Diffusivity, Radial
Diffusivity, Axial Diffusivity

25
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