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Motivation
RQ: What factors influence development of alcohol abuse?
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Motivation
RQ: What factors influence development of alcohol abuse?

Fig 1. Life-course model for mental health with an indication of the
mechanisms linking life expoures and mental disease
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A statistician’'s dream
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Causal models 101: Direc’ged acyclic graph (DAG)

X2 Y

X3

® DAG interpretation: Arrow from X to Y means that X is a cause
of Y.

e Markov property: Often, DAG structure = conditional
independencies in distribution.

® Faithfulness assumption: We also assume that conditional
independencies in distribution = DAG structure.
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Causal models 101: Direc’ged acyclic graph (DAG)

X2 Y

X3

® DAG interpretation: Arrow from X to Y means that X is a cause
of Y.

e Markov property: Often, DAG structure = conditional
independencies in distribution.

® Faithfulness assumption: We also assume that conditional
independencies in distribution = DAG structure.

¢ |dea: Use conditional independencies in data to infer DAG(?) ®
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Completed partially directed acyclic graph (CPDAG)

X1

X2 Y

X3

® QObservational equivalence: Some DAGs produce the same
conditional independencies. Example: X — Y and Y — X.

® Equivalence class: A CPDAG describes the equivalence class of all
DAGs that imply the same conditional independencies.

e CPDAG interpretation: As DAG, but undirected edges means we
do not know orientation.
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A statistician’'s dream made realistic
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Showing 1 to 12 of 1,000 entries

Goal of causal discovery: Estimate CPDAG by analyzing data.
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A statistician’'s dream made realistic
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numData
Filter
X x2 X3 z Y
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Showing 1 to 12 of 1,000 entries

Goal of causal discovery: Estimate CPDAG by analyzing data.

Goal of today’s talk: Do this in a conservative manner, and
ensure acceptable performance on small and moderate samples.
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Conservative discovery

Budget statistical error so that we get:
® Rather too many edges than too few.
® Rather too few oriented edges than too many.

But do make some causal claims (no trivial solutions, and as
informative as possible).
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Small/moderate sample performance of existing

methods

® Most existing causal discovery algorithms use sequential
testing or greedy search strategies.

® Under appropriate assumptions, these algorithms are correct
and complete as n — oo.

® In practice, we see poor small/moderate sample
performance, most likely due to error propagation
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Small/moderate sample performance of existing

methods

® Most existing causal discovery algorithms use sequential
testing or greedy search strategies.

® Under appropriate assumptions, these algorithms are correct
and complete as n — oo.

® In practice, we see poor small/moderate sample
performance, most likely due to error propagation

Example: PC algorithm

@ Start with fully connected undirected graph

@ Repeat: For each pair of variables (A, B), look for separating sets S
among neighbors of Aor Bs.t. ALl B|S. If such an S exists:
Remove edge between A and B.

©® Apply orientation rules making use of unshielded colliders and
acyclicity assumption
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Proposed solution: Supervised learning discovery
(SLdisco)

@ Simulate training data with known data generating mechanisms

@ Train machine learning model on training data (simulated data) +
labels (true CPDAGs)

© Use resulting classification function as a one-step causal discovery
procedure on real data
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Proposed solution: Supervised learning discovery
(SLdisco)

@ Simulate training data with known data generating mechanisms

@ Train machine learning model on training data (simulated data) +
labels (true CPDAGs)

© Use resulting classification function as a one-step causal discovery
procedure on real data

Motivation:
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Proposed solution: Supervised learning discovery
(SLdisco)

@ Simulate training data with known data generating mechanisms

@ Train machine learning model on training data (simulated data) +
labels (true CPDAGs)

© Use resulting classification function as a one-step causal discovery
procedure on real data

Motivation:

Sample size: Learn full graph structure jointly = errors do not propagate
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Proposed solution: Supervised learning discovery
(SLdisco)

@ Simulate training data with known data generating mechanisms

@ Train machine learning model on training data (simulated data) +
labels (true CPDAGs)

© Use resulting classification function as a one-step causal discovery
procedure on real data

Motivation:

Sample size: Learn full graph structure jointly = errors do not propagate

Error tradeoff: No built-in bias towards sparse/dense graphs + outputs
probabilities = can be calibrated to prefered error tradeoff
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SLdisco: Supervised learning discovery
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SLdisco: Supervised learning discovery
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SLdisco: Supervised learning discovery
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Data simulation

Procedure:

® Construct DAG with randomly drawn density (0-80% missing
edges compared to fully connected)

@® Simulate linear Gaussian data according to the DAG with
randomly drawn residual variances and regression coefficients,
compute correlation matrix
— features

© Construct CPDAG adjacency matrix corresponding to the DAG
— labels

Orders of variables (columns/rows in matrices) are randomly
permuted before training.
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Training and testing

We consider all combinations of the following settings:
No. nodes: p € {5,10,20}

Sample size per correlation matrix:
n € {50,100, 500, 1000, 5000, 10000, 50000}

Threshold: 7 € {0.01,0.05,0.1,0.2,0.3,0.4,0.5,0.6,0.7}
We use a very simple convolutional neural network architecture.

All networks are trained on by, = 1,000, 000 observations, and
evaluated on byt = 5000 observations.

We compare with GES with BIC-type scores and PC with varying
significance level o € {1078,10~*,1073,0.01,0.5,0.1,0.2,0.5,0.8}.
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Evaluation metrics

Actual Class

Positive (P) Negative (N}

Positive (P) True Positive (TP) False Positive (FP)

Class

Negative (N) False Negative (FN) True Negative (TN)

Adjacency metrics:

i icti . _TN ;
Negative predictive value: +y ry (conservativeness)

. . _precision-recall . .
F1 score: 2. F=2on=2 (informativeness)

Conditional orientation metrics:

s " L TP
Precision: (= positive predictive value) 51 ¢p
(conservativeness)

" n . . NPV specificity /- .
G1" score: 2 gpyradfiai, (informativeness)
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Results: Simulation study
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Estimated number of edges

SLdisco: Estimated number of edges
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Adjacency results

Adjacency metrics
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Orientation results

Conditional orientation metrics
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Application
Metropolit cohort dataset!:
® |ongitudinal life course epidemiological dataset

® Follows n = 2928 Danish men from their birth in 1953 until
2018

® Retrospective: Condition on being alive at follow-up in 2018

® We use a subset of p = 10 variables

'Osler, Lund, Kriegbaum, Christensen, & Andersen (2006). Cohort profile:
the Metropolit 1953 Danish male birth cohort. International Journal of
Epidemiology.
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Application
Metropolit cohort dataset!:
® |ongitudinal life course epidemiological dataset

® Follows n = 2928 Danish men from their birth in 1953 until
2018

® Retrospective: Condition on being alive at follow-up in 2018

® We use a subset of p = 10 variables

We discuss validity on real data in two ways:
@® How plausible is the estimated CPDAG?

® How stable is it towards random subsampling (smaller n)?

1Osler, Lund, Kriegbaum, Christensen, & Andersen (2006). Cohort profile:
the Metropolit 1953 Danish male birth cohort. International Journal of
Epidemiology.
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Metropolit CPDAG: SLdisco (BPCO with 7 = 0.4)

Intelligence score

Alcchol binging frequency

Length i\ v income %
I T T 1
birth child youth adult
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SECTION

Metropolit subsampling stability
“Ground truth”: Model estimated using full data (n = 2928).

OF BIOSTATISTICS

Method | Subsample n | Adj. F1 | Adj. NPV | Ori. G1 | Ori. prec.
SLdisco 50 0.67 0.88 0.75 1.00
100 0.67 0.88 0.75 1.00
500 0.89 0.95 0.55 1.00
1000 0.95 0.97 0.80 1.00
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Metropolit subsampling stability
“Ground truth”: Model estimated using full data (n = 2928).

Method | Subsample n | Adj. F1 | Adj. NPV | Ori. G1 | Ori. prec.
SLdisco 50 0.67 0.88 0.75 1.00
100 0.67 0.88 0.75 1.00
500 0.89 0.95 0.55 1.00
1000 0.95 0.97 0.80 1.00
PC 50 0.53 0.78 0.33 1.00
100 0.53 0.78 0.33 1.00
500 0.72 0.85 0.20 0.50
1000 0.75 0.86 0.33 0.71
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Metropolit subsampling stability
“Ground truth”: Model estimated using full data (n = 2928).

Method | Subsample n | Adj. F1 | Adj. NPV | Ori. G1 | Ori. prec.

SLdisco 50 0.67 0.88 0.75 1.00
100 0.67 0.88 0.75 1.00
500 0.89 0.95 0.55 1.00
1000 0.95 0.97 0.80 1.00

PC 50 0.53 0.78 0.33 1.00
100 0.53 0.78 0.33 1.00
500 0.72 0.85 0.20 0.50
1000 0.75 0.86 0.33 0.71

GES 50 0.56 0.82 0.33 1.00
100 0.67 0.85 0.29 1.00
500 0.64 0.86 0.00 1.00
1000 0.76 0.89 0.00
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Conclusion

SLdisco addresses the two issues:
Error tradeoff: More conservative, only modestly less informative

Sample size: Better small/moderate sample performance
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Limitations and next steps

® |ooks like we may be overfitting for large n
® May be sensitive towards Gaussianity assumption

® Some initial computation time for training models (but only
has to be done once per n-p combination, and fine-tuning of
pretrained model could be helpful)

¢ Assumes causal sufficiency (no unobserved confounders)
¢ Not permutation equivariant (variable ordering matters)

® More sophisticated /tailored machine learning (NN
architecture and training setup) could be interesting

® Time series or other specialized data structures could be
accommodated easily as 3D/4D/... feature data
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Want to know more?

Article: Petersen, Ramsey, Ekstrgm & Spirtes (2022). Causal
discovery for observational sciences using supervised
machine learning. arXiv:2202.12813.

Code og pretrained models:
https://github.com/annennenne/SLdisco

R package: causalDisco - on CRAN

Or reach out at: ahpe@sund.ku.dk
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