

Conservative causal discovery by use of supervised machine learning

Anne Helby Petersen

Joint work with Joseph Ramsey, Claus Ekstrøm & Peter Spirtes

Motivation

RQ: What factors influence development of alcohol abuse?

Motivation

RQ: What factors influence development of alcohol abuse?

Fig 1. Life-course model for mental health with an indication of the mechanisms linking life expoures and mental disease

A statistician's dream

Causal models 101: Directed acyclic graph (DAG)

- DAG interpretation: Arrow from X to Y means that X is a cause of Y.
- Markov property: Often, DAG structure ⇒ conditional independencies in distribution.
- Faithfulness assumption: We also assume that conditional independencies in distribution ⇒ DAG structure.

Causal models 101: Directed acyclic graph (DAG)

- DAG interpretation: Arrow from X to Y means that X is a cause of Y.
- Markov property: Often, DAG structure ⇒ conditional independencies in distribution.
- Faithfulness assumption: We also assume that conditional independencies in distribution ⇒ DAG structure.
- Idea: Use conditional independencies in data to infer DAG(?)

Completed partially directed acyclic graph (CPDAG)

- Observational equivalence: Some DAGs produce the same conditional independencies. Example: X → Y and Y → X.
- **Equivalence class:** A CPDAG describes the equivalence class of all DAGs that imply the same conditional independencies.
- CPDAG interpretation: As DAG, but undirected edges means we do not know orientation.

A statistician's dream made realistic

Goal of causal discovery: Estimate CPDAG by analyzing data.

A statistician's dream made realistic

Goal of causal discovery: Estimate CPDAG by analyzing data.

Goal of today's talk: Do this in a **conservative** manner, and ensure acceptable performance on **small and moderate samples**.

Budget statistical error so that we get:

- Rather too many edges than too few.
- Rather too few oriented edges than too many.

Budget statistical error so that we get:

- Rather too many edges than too few.
- Rather too few oriented edges than too many.

Budget statistical error so that we get:

- Rather too many edges than too few.
- Rather too few oriented edges than too many.

Budget statistical error so that we get:

- Rather too many edges than too few.
- Rather too few oriented edges than too many.

Small/moderate sample performance of existing methods

- Most existing causal discovery algorithms use sequential testing or greedy search strategies.
- Under appropriate assumptions, these algorithms are correct and complete as n → ∞.
- In practice, we see poor small/moderate sample performance, most likely due to error propagation

Small/moderate sample performance of existing methods

- Most existing causal discovery algorithms use sequential testing or greedy search strategies.
- Under appropriate assumptions, these algorithms are **correct** and **complete** as $n \to \infty$.
- In practice, we see poor small/moderate sample performance, most likely due to error propagation

Example: PC algorithm

- 1 Start with fully connected undirected graph
- **2** Repeat: For each pair of variables (A, B), look for separating sets S among neighbors of A or B s.t. $A \perp \!\!\! \perp B \mid S$. If such an S exists: Remove edge between A and B.
- Apply orientation rules making use of unshielded colliders and acyclicity assumption

- Simulate training data with known data generating mechanisms
- $oldsymbol{2}$ Train machine learning model on training data (simulated data) + labels (true CPDAGs)
- 3 Use resulting classification function as a one-step causal discovery procedure on real data

- Simulate training data with known data generating mechanisms
- $oldsymbol{2}$ Train machine learning model on training data (simulated data) + labels (true CPDAGs)
- Use resulting classification function as a one-step causal discovery procedure on real data

Motivation:

- Simulate training data with known data generating mechanisms
- 2 Train machine learning model on training data (simulated data) + labels (true CPDAGs)
- Use resulting classification function as a one-step causal discovery procedure on real data

Motivation:

Sample size: Learn full graph structure jointly ⇒ errors do not propagate

- Simulate training data with known data generating mechanisms
- $oldsymbol{2}$ Train machine learning model on training data (simulated data) + labels (true CPDAGs)
- Use resulting classification function as a one-step causal discovery procedure on real data

Motivation:

Sample size: Learn full graph structure jointly \Rightarrow errors do not propagate

Error tradeoff: No built-in bias towards sparse/dense graphs + outputs probabilities \Rightarrow can be calibrated to prefered error tradeoff

Data simulation

Procedure:

- Construct DAG with randomly drawn density (0-80% missing edges compared to fully connected)
- Simulate linear Gaussian data according to the DAG with randomly drawn residual variances and regression coefficients, compute correlation matrix
 - \rightarrow features

Orders of variables (columns/rows in matrices) are randomly permuted before training.

We consider all combinations of the following settings:

No. nodes: $p \in \{5, 10, 20\}$

Sample size per correlation matrix:

 $n \in \{50, 100, 500, 1000, 5000, 10000, 50000\}$

Threshold: $\tau \in \{0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7\}$

We use a very simple convolutional neural network architecture.

All networks are trained on $b_{\text{train}} = 1,000,000$ observations, and evaluated on $b_{\text{test}} = 5000$ observations.

We consider all combinations of the following settings:

No. nodes: $p \in \{5, 10, 20\}$

Sample size per correlation matrix:

 $n \in \{50, 100, 500, 1000, 5000, 10000, 50000\}$

Threshold: $\tau \in \{0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7\}$

We use a very simple convolutional neural network architecture.

All networks are trained on $b_{\text{train}} = 1,000,000$ observations, and evaluated on $b_{\text{test}} = 5000$ observations.

We consider all combinations of the following settings:

No. nodes: $p \in \{5, 10, 20\}$

Sample size per correlation matrix:

 $n \in \{50, 100, 500, 1000, 5000, 10000, 50000\}$

Threshold: $\tau \in \{0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7\}$

We use a very simple convolutional neural network architecture.

All networks are trained on $b_{\text{train}} = 1,000,000$ observations, and evaluated on $b_{\text{test}} = 5000$ observations.

We consider all combinations of the following settings:

No. nodes: $p \in \{5, 10, 20\}$

Sample size per correlation matrix:

 $n \in \{50, 100, 500, 1000, 5000, 10000, 50000\}$

Threshold: $\tau \in \{0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7\}$

We use a very simple convolutional neural network architecture.

All networks are trained on $b_{\text{train}} = 1,000,000$ observations, and evaluated on $b_{\text{test}} = 5000$ observations.

Evaluation metrics

		Actual Class		
		Positive (P)	Negative (N)	
Predicted Class	Positive (P)	True Positive (TP)	False Positive (FP)	
	Negative (N)	False Negative (FN)	True Negative (TN)	

Adjacency metrics:

Negative predictive value: $\frac{TN}{TN+FN}$ (conservativeness)

F1 score: 2 · precision·recall / precision+recall / (informativeness)

Conditional orientation metrics:

Precision: (= positive predictive value) $\frac{TP}{TP+FP}$ (conservativeness)

"G1" score: 2 · NPV-specificity (informativeness)

Results: Simulation study

Estimated number of edges

Use $\tau = 0.4$ for p = 5, and $\tau = 0.3$ for $p \in \{10, 20\}$.

Adjacency results

Adjacency metrics

n

Orientation results

Conditional orientation metrics

n

Application

Metropolit cohort dataset¹:

- Longitudinal life course epidemiological dataset
- Follows n = 2928 Danish men from their birth in 1953 until 2018
- Retrospective: Condition on being alive at follow-up in 2018
- We use a subset of p = 10 variables

¹Osler, Lund, Kriegbaum, Christensen, & Andersen (2006). Cohort profile: the Metropolit 1953 Danish male birth cohort. International Journal of Epidemiology.

Application

Metropolit cohort dataset¹:

- Longitudinal life course epidemiological dataset
- Follows n = 2928 Danish men from their birth in 1953 until 2018
- Retrospective: Condition on being alive at follow-up in 2018
- We use a subset of p=10 variables

We discuss validity on real data in two ways:

- How plausible is the estimated CPDAG?
- ② How stable is it towards random subsampling (smaller n)?

¹Osler, Lund, Kriegbaum, Christensen, & Andersen (2006). Cohort profile: the Metropolit 1953 Danish male birth cohort. International Journal of Epidemiology.

Metropolit CPDAG: SLdisco (BPCO with $\tau = 0.4$)

Metropolit subsampling stability

"Ground truth": Model estimated using full data (n = 2928).

Method	Subsample n	Adj. F1	Adj. NPV	Ori. G1	Ori. prec.
SLdisco	50	0.67	0.88	0.75	1.00
	100	0.67	0.88	0.75	1.00
	500	0.89	0.95	0.55	1.00
	1000	0.95	0.97	0.80	1.00

Metropolit subsampling stability

"Ground truth": Model estimated using full data (n = 2928).

Method	Subsample n	Adj. F1	Adj. NPV	Ori. G1	Ori. prec.
SLdisco	50	0.67	0.88	0.75	1.00
	100	0.67	0.88	0.75	1.00
	500	0.89	0.95	0.55	1.00
	1000	0.95	0.97	0.80	1.00
PC	50	0.53	0.78	0.33	1.00
	100	0.53	0.78	0.33	1.00
	500	0.72	0.85	0.20	0.50
	1000	0.75	0.86	0.33	0.71

Metropolit subsampling stability

"Ground truth": Model estimated using full data (n = 2928).

Method	Subsample n	Adj. F1	Adj. NPV	Ori. G1	Ori. prec.
SLdisco	50	0.67	0.88	0.75	1.00
	100	0.67	0.88	0.75	1.00
	500	0.89	0.95	0.55	1.00
	1000	0.95	0.97	0.80	1.00
PC	50	0.53	0.78	0.33	1.00
	100	0.53	0.78	0.33	1.00
	500	0.72	0.85	0.20	0.50
	1000	0.75	0.86	0.33	0.71
GES	50	0.56	0.82	0.33	1.00
	100	0.67	0.85	0.29	1.00
	500	0.64	0.86	0.00	1.00
	1000	0.76	0.89	0.00	0.25

Conclusion

SLdisco addresses the two issues:

Error tradeoff: More conservative, only modestly less informative

Sample size: Better small/moderate sample performance

Limitations and next steps

- Looks like we may be overfitting for large n
- May be sensitive towards Gaussianity assumption
- Some initial computation time for training models (but only has to be done once per n-p combination, and fine-tuning of pretrained model could be helpful)
- Assumes causal sufficiency (no unobserved confounders)
- Not permutation equivariant (variable ordering matters)
- More sophisticated/tailored machine learning (NN architecture and training setup) could be interesting
- **Time series** or other specialized data structures could be accommodated easily as 3D/4D/... feature data

Want to know more?

Article: Petersen, Ramsey, Ekstrøm & Spirtes (2022). Causal

discovery for observational sciences using supervised

machine learning. arXiv:2202.12813.

Code og pretrained models:

https://github.com/annennenne/SL disco

R package: causalDisco - on CRAN

Or reach out at: ahpe@sund.ku.dk

