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Summary
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• Pattern scaling of a climate model ensemble (Climate Science)

• Nonstationary Gaussian fields (Applied Stats)

• Spatial autoregressions, multiscale processes (Big Data)

• Results for CESM ensemble

• Data analysis on super computers (Big R )

Challenges:
Building covariance models for large problems, simulating Gaussian fields,

and actually computing the beasts!



PART 1
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Climate model emulation



Context
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What will the climate be in 60 years?

• Need a scenario of future human acitivities.

The representative concentration pathway (RCP) is a synthesis that

specifies how greenhouse gases change over time.

• Need a geophysical model to relate the RCP to possible changes in

climate.

Earth system models are complex, physical models that integrate the

feedbacks in the atmosphere, ocean, land, ice and other components to

determine the climate under different conditions.

Community Earth System Model (CESM)
A family of models developed at NCAR and supported by the National

Science Foundation.



From global to local
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Main benefit of a climate model is in quantifying the local effects of

climate change.

CESM Large Ensemble (CESM-LE)

A 30+ member ensemble of CESM simulations that have been designed

to study the local effects of climate change

– and the uncertainty due to the natural variability in the earth system.

• ≈ 1◦ spatial resolution – about 55K locations

• Simulation period 1920 - 2080

• Using RCP 8.5 after 2005



Classic pattern scaling.
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The assumption:
Patterns of temperature change over space are linear functions of the

change in global mean temperature.

Tt Temperature at time t at a specific location

(or climate model grid box)

gt Global mean temperature at time t.

(Tt − T0) ≈ P (gt − g0)

P is a slope (amplitude) that relates a change in global temperature to

one locally.
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Mean slopes across 30 members for JJA

E. g. value of 2.5 means: a 1◦ global increase implies 2.5◦ increase

locally.

This allows us to determine the local mean temperature
change based on a simpler model for the global average
temperature



PART 2
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A spatial data problem



Individual patterns
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Ensemble mean First 8 centered ensemble members

−0.5 0.0 0.5

. . . there are 22 more of these!
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Goal:
Be able to simulate additional fields efficiently that match the spatial

dependence in this 30 member ensemble.

Result:
• Use simple models for other RCP scenarios to generate a large number

of ensembles and without the need to do full CESM runs.

• Enable researchers using climate change impact models to drive their

models with a larger number of ensembles and without the need to do

full CESM runs.



Matern covariance function
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k(x1,x2) = ρCdνKν(d), and d = ||x1 − x2||/α

• Kν a modified Bessel function.

• C a normalizing constant depending on ν.

• Smoothness ν measures number of mean square derivatives and is

equivalent to the polynomial tail behavior of the spectral density.

•When ν = .5, Matérn is an exponential covariance, ν =∞, a Gaussian.



Fitting all grid boxes
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Matérn MLEs
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• 11× 11 windows using coordinates in degrees

• About 13K grid boxes in this subregion



Some drawbacks
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• This is not a global model and the covariance is implicit.

• Simulation is slow because each grid point requires a separate eigen-

decomposition.

• Difficult to capture long range dependence simulating from local fits.

These points motivate a different approach to representing
the GP
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PART 3:

Markov random fields,
multi-scale processes



Representing a random surface

D. Nychka Pattern Scaling National Science Foundation 15

g(x) =
∑
j

φj(x)cj

• c is the random field from the SAR.

• {φj(x)} are radial basis functions :

φj(x) = ψ(||x− uj||/δ)

A member of the Wendland basis functions
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A Spatial Autoregression (SAR)
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Gridded field:
. . . . .
. . c1 . .
. c2 c∗ c3 .
. . c4 . .
. . . . .

SAR weights:
. . . . .
. . -1 . .
. -1 a −1 .
. . -1 . .
. . . . .

The filter:
ac∗ − (c1 + c2 + c3 + c4) = white noise

• a needs to be greater than 4.

• Bc = i.i.d.N(0,1) where B is a sparse matrix

• Covariance for c is (BTB)−1 = Q−1

Q known as the precision or information matrix.



Multi-resolution extension
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Add together different resolution levels to approximate the Matérn GP.

g(x) =
∑
j

φj1(x)cj1 +
∑
j

φj2(x)cj2 + . . .+
∑
j

φjL(x)cjL

g(x) = g1(x) + g2(x) + ...+ gL(x)

Correlation functions for g1, . . . , g6 and a target exponential

0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
4

0.
8

distance

co
rr

el
at

io
n

1

2

3
4



Computing
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To simulate the GP
Basis function matrix: Φi,j = φj(xi)

• Sparse solve of V Tc = e where e are iid N(0,1)

V the Choleski factor of Q, i.e. Q = V TV

• f = Φc.

• This a global simulation for a well-defined GP.

• Includes possible long-range correlations.

• At least two orders of magnitude faster than the local approach.
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PART 4:

Nonstationary Analysis



A global model:
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Can encode all rows of B from local fitting giving the sparse precision

matrix Q = BBT

A lazy (but faster) route
Fit the local Matérn model and approximate using the LatticeKrig pro-

cess model. From θ̂, ν̂ translate to weights and a.

Future Analysis
Estimate the weights and a directly for the LatticeKrig model.



Emulating model fields

D. Nychka Pattern Scaling National Science Foundation 21



The land/ocean boundary
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Now work directly with the LatticeKrig process pararmeters

Land/ Ocean mask over Califorina coast

●●

●

●

SAR weights:
. . . . .
. . -1 . .
. -1 a α .
. . -1 . .
. . . . .

α = −1 isotropic same as the ocean links

α = 0 no correlation of grid box with land
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PART 5:

Parallel computation with R



The Cheyenne supercomputer.
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≈145K cores = 4032 nodes × 36 cores

and each core with 2Gb memory

52Pb parallel file system

• Core-hours are available to the NSF research community.

• Simple application process for graduate student allocations.

• Implementation of R on batch and interactive nodes.



Are zillions of R workers feasible?
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Yes for embarassingly parallel data analysis.

• Rmpi used to initiate many parallel R sessions

from within a supervisor R session.

• Time to initiate 1000 workers takes about 1 minute.

• Little time lost in broadcasting the data object (12Mb) – about 3

seconds.



Approximate linear scaling using Rmpi
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Individual times for:

spawn broadcast apply
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Summary
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• Emulation of climate model experiments for interpolation and uncer-

tainty quantification is a fruitful area for data science.

• Local covariance fitting can capture variation in complex model output.

• Markov random field based models are suited for large data sets.

• There is an emerging role for supercomputers to support data analysis.

Software
• fields R package, Nychka et al. (2000 - present)

• LatticeKrig R package, Nychka et al. (2014- present)

• HPC4Stats SAMSI short course August 2017, Nychka, Hammerling and

Lenssen.
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Thank you!
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