Elemental Set Methods

David Banks
Duke Aniveelitp

1. Introduction I

Data mining deals with complex, high-dimensional data. This means that datasets

often combine different kinds of structure. For example:

e There might be several different subgroups within the data, each described by a

different linear relationship.

e Some clusters might be tightly grouped with respect to one subset of variables,

whereas other clusters are grouped according to different variables.

e A few outliers can distort otherwise simple structure; adaptive methods for

ignoring them are wanted.

One wants a method that enables the analyst to sequentially extract simple structures
in the data.

o J

-

To illustrate the problem in the context of regression, consider the following plot of
the number of external links against the number of internal links for the webpages in
the Wikipedia. This is clearly a mixture of linear structures.

4000 4

3500
3000 %
2500 |
2000 B¢

1500

Humber of external links

1000

500

1] 500 1000 1500 2000 2500 3000 3500 4000
Hunber of internal links

-

The graph of the number of outgoing links for Wikipedia pages against the size of

page is less clear, but the same kind of structure is still present.

5000 |

A : T & I + k3 T] I
- + + A
w g L L +
I
4 i ++ +_;+++ * +
4000 +H ¥ A
+ +-F" * g * i
+ 4 *
£ . #’4 o+ Y
= + + + + # %
= + + ot + + + + +
= f[E *5}. ¥+ e B - *
2 3000 L 4 + it 4 + E ¥ + -
< . T + oW + o+ +
- TR T ﬁ§¢q33+ +
W :
= +
g +
s 2000 '
E a H
£
2
$ ¥
i _!_ +
- + +
1000 i + -
+ +
- +
* -
+++ o
i
0 v W s d ? 1
1] 100000 200000 300000 400000 500000 60000(

Size of page in bytes

~

-

More generally, one wants to find nonparametric regression structure, of the kind

shown below, in high (or moderately high) dimensional spaces.

o
<

-

To start simply, suppose one has two kinds of linear structures and pure noise, e.g.:
e 40% of the data follow Y =ap+ >0 | X, + ¢
e 30% of the data follow Y =0y + > | 5;X; + ¢
e 30% of the data are noise.

One can imagine that the two linear structures correspond to some unmeasured

categorical covariate, and the pure noise represents a third category of cases.

What can one do to analyze cases like this? One approach is to use a Bayesian
mixture model, but this assumes that the analyst has some strong prior knowledge

about the kinds of structure that are present and the number of mixture components.

Alternatively, one can use S-estimators, which look for the thinnest strip (think of a
transparent ruler) which covers some prespecified (but larger than 50%) fraction of
the data.

.

4)

All these strategies break down in high dimensions, or when the structures of interest

contain less than 50% of the sample, or when fitting complex nonlinear models.

We want a solution strategy that applies to more general cases, including:
e linear and non-linear regression in high dimensions,
e multidimensional scaling,
e cluster analysis.

The method described here can be extended to other cases as well.

Our approach is to develop the method of elemental sets, proposed by A. C. Atkinson
(“Masking Unmasked,” Biometrika; 1986) and developed further by Doug Hawkins

(“The Accuracy of Elemental Set Approximations for Regression,” JASA; 1993). This
method tries to find a small number of observations that correspond to a structure of

interest, and then “grow” that set.

o J

2. Hidden Structure in Regression'

Consider the graph below, for a simple regression problem. It is clear that the data
come from two different models, and that any naive attempt at regression will miss
both of the interesting structures and find some kind of average solution.

Sample Data Set

1.0

0.8

0.6

0.4

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0

4)

For linear regression, assume the observations are {Y;, X;} for i = 1,...n and that @
percent of these follow the model

EZﬁo—l—ﬁlXﬂ—i——i—ﬁszp—l—éz where GiNN(O,O'>

where (), 3, and ¢ are unknown. The rest of the data have no relationship between Y;
and X,L

One can refer to the Q% of the data as “good” and the rest as “bad”.

Simple Idea:
Start small, with a subsample of only good observations
= add only good observations

= end with a large subsample of good observations.

General procedure:

1. Strategically choose an initial set of d starting subsamples S;, each of size m.

2. Grow the subsamples by adding consistent data.

3. Select the largest subsample.

o J

4)

This figure shows the true lines (unbroken), the elemental set lines (short dashes) and
the Bayes mixture model (long dashes).

Cherry-Picking & BMM Results

10

-

The method for choosing the starting subsamples and growing them efficiently is

important in practice.

One starts with a guess about @), the fraction of good data. In general, this is

unknown, so one might pick a value that is reasonable given
e domain knowledge about the data collection

e the point at which a fraction is so small that there is little scientific interest.

From the full dataset {Y;, X;} one selects, without replacement, d subsamples S; of

size m.

One needs to choose d and m to ensure that at least one of the starting subsamples
S; has a very high probability C' of consisting entirely of good data (i.e., data that

come from the same unknown structure).

.

11

4)

Preset a probability C' that determines the chance that the algorithm will work.

The value m, which is the size of the starting-point random subsamples, should be
the smallest possible value that allows one to calculate a goodness-of-fit measure. In
the case of multiple linear regression, that value is p + 2, and a natural goodness-of-fit

measure is R2.

One solves the following equation for d:

C = IP[at least one of Si,...,Sy is all good | =1 — (1 — Q2%

Example: @ = .8, ¢ = .95, m = 3 (for simple linear regression, with p = 1):

95=1—-[1— (8P4 — d=5

12

4)

Given the d starting-point subsamples S, one grows each one of them by adding
observations that do not appreciably lower the goodness-of-fit statistic (R?).

Conceptually, for a particular S;, one could cycle through all of the observations, and
on each cycle augment S; by adding the observation that provided the largest value of
R?. This cycling would continue until no observation can be added to S; without

substantially decreasing the R2.

One does this for all of the subsamples S;. At the end of the process, each augmented
S; would have size m; and goodness-of-fit R?. The augmented subsample that
achieves a large value of m; and a large value of R? is the one that captures the most

important structure in the data.

Then one can remove the data in S; and iterate to find the next-most important

structure in the dataset.

o J

13

-

In practice, the conceptual algorithm which adds one observation per cycle is
expensive when the dataset is large or when one is fitting a complex model (e.g.,
doing MARS fits rather than multiple regression). For this reason, we use a two-step
procedure to add observations.

Fast Search
e Sequentially sweep through all observations not in S;.

e If the obsevation improves the fitness measure (or perhaps only lowers it by a
very small amount), then
— add observation to .S
— set m; — m; + 1.

If m; is large, say)n/2,then implement slow search.

Slow Search

e Add the observation that improves the FM the most or decreases the fitness

measure by not more than some prechosen threshold.

e Repeat until no observation can be added.

.

14

4)

The analyst may pick a threshold that seems appropriately small and a fraction of n
that seems appropriately large. These choices determine the runtime of the algorithm

and should reflect practical constaints.

The fast search is greedy, and the order of observations in the cycling matters. The
slow search is less greedy; order does not matter, but it adds myopically. The fast
search can add many observations per cycle through the data, but the slow search

always adds exactly one.

If speed is truly important, then there are other ways to accelerate the algorithm. A
standard strategy would be to increase the number of starting-point subsamples and

combine those that provide similar models and fits as they grow.

n

possible subsamples.
[Qn/100]

The main concern is not to enumerate all (

o J

15

-

1.

Note that:

One does not need to terminate the search at some preset fraction; one can just

grow until the goodness-of-fit measure deteriorates too much.

. The goodness-of-fit measure should not depend upon the sample size. For SLR

this is easy, since R? is just the proportion of variation in Y explained by X. For
larger p, if one is doing stepwise regression to select variables, then one wants

to use an AIC or Mallows’ C), statistic to adjust the tradeoft in fit between the
number of variables and the sample size.

. Other measures of fit are appropriate for nonparametric regression, such

as cross-validated within-subsample squared error. But this adds to the

computational burden.

. One can and should monitor the fit as new observations are added. When

one starts to add bad data, this is quickly visible in a plot——there is a clear
“slippery-slope” effect.

16

4)

To see how the slippery-slope occurs, and the value of monitoring fit as a function of
order of selection, consider the plot below. This plot is based on using R? for fitness
and a line + uniform noise model. The total sample size is 80, and 70 observations

were generated with moderate noise from a line; the knee in the curve clearly shows

when one should stop adding observations.

1.0

0.8

0.6

fffffff knee in curve
—— sequential FM

RA2
0.4

0.2

0.0

0 20 60 80

0
Sample Size

17

4)

3. Hidden Structure in Multidimensional Scaling'

Multidimensional scaling (MDS) starts with a proximity matrix that gives

approximate distances between all pairs in a set of objects. These distances are often

close to a true metric.

The purpose of MDS is to find a low-dimensional plot of the objects such that the
inter-object distances are as close as possible to the values given in the proximity
matrix. That representation automatically puts similar objects near each other. This
is done in terms of a least squares fit to the values in the proximity matrix, by

minimizing the stress function:
1/2
Stress(z1,...,2n) = | > (div — ||2i — z¢]|)
i
where z; is the location assigned to pseudo-object ¢ in the low-dimensional space and

d;;» s the entry in proximity matrix.

o J

18

4)

The classic example is to take the entries in the proximity matrix to be the drive-time
between pairs of cities. This is not a perfect metric, since roads curve, but it is
approximately correct. MDS finds a plot in which the relative position of the cities
looks like it would on a map (except the map can be in any orientation; north and

south are not relevant).

MDS solutions are extremely susceptible to bad data. For example, if one had a flatt
tire while driving from Baltimore to DC, this would create a seemingly large distace.
The MDS algorithm would distort the entire map in an effort to put Baltimore far

from DC and still respect other inter-city drive times.

A very small proportion of outliers, or objects that do not fit well in a low-dimensional
representation, can completely wreck the interpretability of an MDS plot. In many

applications, such as text retrieval, this is a serious problem.

o J

19

3.1 MDS Examplel

To test elemental set methods for MDS, consider the latitudes and longitudes of 99
eastern U.S. cities. The Euclidean distances between these cities gave the proximity

matrix; the only stress in the MDS map is due to the curvature of the earth.

Perturb the proximity matrix by inflating a random proportion 1 — @) of the entries:

Bad Data | Distortion (%) | Stress
150 1.028

2 500 2.394

150 1.791

10 500 28.196
150 3.345

30 500 9.351

20

4)

To make things more interesting, we use not the traditional MDS using the stress
measure defined previously, but rather Kruskal-Shephard non-metric scaling, in which

one finds {z;} to minimize

> i [0(([25 — 2o]) — diir]?
Zz’;éz" dzzz"

where 0(-) is an arbitrary increasing function fit during the minimization. The

Stressis(z1,...,2,) =

result is invariant to monotonic transformations of the data, which is why it is

nonparametric.

This minimization uses an alternating algorithm that first fixes 6(-) and finds the
{z;}, and then fixes the {z;} and uses isotonic regression to find 6(-). This shows that

the algorithm can be used in complex fits.

Our goal is to cherry-pick the largest subset of cities whose intercity distances can be

represented with little stress.

o J

21

-

In MDS, the size m of the initial subsamples is 4 (since three points are always
coplanar). We took C' = .99 as the prespecified chance of getting at least one good
subsample, and for) = .8 this implies we need 9 starting samples. The results are in
the table.

True Distance Original | n® | n* Final

1 —Q (%) | Distortion (%) | Stress Stress
150 1.028 | 80 | 80 | 4.78¢-12
2 500 2.394 | 80 | 80 | 4.84¢-12
150 1.791 | 80 | 80 | 4.86e-12
10 500 98.196 | 80 | 80 | 4.81e-12
150 3.345 | 80 | 77 | 4.86e-12
30 500 0.351 | 80 | 78 | 4.78¢-12

e Note: The stress of the undistorted dataset was 8.42 x 10712,

.

22

-

As before, one should inspect order-of-entry plots that display the stress against the
cities chosen for inclusion. The following two plots are typical, and show the knee in
the curve that occurs when one begins to add bad cities.

0.5

0.4
0.8

0.2 0.3
0.4 0.6

0.1
0.2

Stress: 150% Distortion

Stress: 500% Distortion

0.0
0.0

40 60 80 0 40 60 80
Sample Size Sample Size

23

4. Cluster Analysis'

Traditional cluster analysis tends to perform poorly in high dimensions; a few
outliers can distort the analysis (Kaufman & Rousseeuw 1990), and the Curse of
Dimensionality makes it difficult to discover the hidden structure (Hall et al. 2006;
Bickel & Levina 2008). For these reasons, we apply the cherry-picking heuristic to the

problem of multivariate cluster analysis.

An example of locally low-dimensional clustering arises in biometric identification
of typists from patterns in their keystroke hold times and inter-key latencies. This
application is important in computer security, where one hopes to discover someone
who has stolen a password by the divergence of their typing rhythms from those of

the genuine user.

o J

24

4)

One study of keystroke patterns (Killourhy & Maxion 2008) had 51 typists type the
same ten letter password (‘.tiesRoanl’, chosen because it contains both awkward and
common combinations on the qwerty keyboard, and a shift, exercising a range of
typing dynamics). The participants typed the “strong” password 400 times, in eight
sets of 50. Each typing of the password produced a vector in IR*!, consisting of eleven
hold times (one for each of the ten letters and one for the Return key typed at

the end of the password) and ten keydown-keydown latencies (one for each pair of

consecutively-typed keys).

Good biometric identification is achieved if the different typists show strong
clustering. However, it was suspected that the characteristic patterns of a typist
might show up clearly in only some of the components of the vector, and that those

components would differ according to the typist.

o J

25

Hold (Return
Latency (| — Return
Hold (|

Latency (n — |
Hold (n

Latency (a—n
Hold (a

Latency (0 - a
Hold (o

Latency (Shiftr-o
Hold (Shift r
Latency (five — Shift r
Hold (five

Latency (e — five
Hold (e

Latency (i—e

Hold (i

Latency (t—i

Hold (t

Latenc:'y| (period -t
old (period

Min

Max

Min

Max

Min

Max

Min

Max

Min

Max

The parallel-coordinate plot depicts the typing rhythms of each of the five typists.
Each typist’s timing components are shown in a separate panel so styles may be

compared.

4)

Cherry-Picking Algorithm for Clustering:

Step 1. Seeding: Three observations are randomly chosen as a cluster seed. For this
seed sample, a measure of dispersion is calculated for each of the 21 variables
(i.e., the ratio of the sample standard deviation to its mean). The two variables

with the smallest dispersions according to this measure are identified.

Step 2. Selection: Using only these two low-dispersion variables, the bivariate
covariance matrix for the clustered observations is calculated. For all the
observations not yet in the cluster, the squared Mahalanobis distance to the mean
of the cluster is calculated. Each distance was compared with the 99th percentile
of the x3 distribution, and those with distances below a threshold are added to

the cluster.

Step 3. Termination: The iteration procedure in step 2 is repeated until the cluster
converges (i.e., no new observations are added). The size of the resulting cluster
is compared to the expected size of a cluster (e.g., 5045 elements). If the sizes
do not match, the cluster is discarded, and we return to Step 1 to find a better

cluster.

o J

27

4)

This cherry-picking clustering algorithm was run on the 250-observation keystroke
data. The algorithm saved five clusters, each of which happened to contain 50

observations (but this was chance, not manipulation).

Breakout by Typist
Cluster | Variable 1 Variable 2 1 2 3 4 5
1 Hold (Shift r) Hold (1) 1 48 0 1 0
2 Hold (period) Latency (1- Return) | 2 1 1 46 O
3 Latency (n-1) Hold (1) 0O 0 44 0 6
4 Latency (five - Shift r) Hold (Shift r) 2 0 4 3 41
5 Hold (five) Hold (1) 45 1 1 0 3

Table 1: A summary of the clustering of the keystroke data. The two variable columns
list which variables the cluster selected. The final five columns break down each cluster
into which typists’ observations were included in the cluster. In each case, the cluster

roughly corresponds to data from a single typist.

o J

28

5. Summary I

We have described a strategy for iterative structure discovery in complex datasets.

It works in computer-intensive applications, but one needs smart search

algorithms; scaling to large datasets is feasible but requires care.

We can make probabilistic statements about the chance of having a good
starting-point subsample, and this almost leads to a probabilistic guarantee on
the result, but not quite.

Simulation shows good performance in many applications.

The method is fairly straightforward for regression and nonparametric regression,
MDS, and cluster analysis.

29

