
Elemental Set Methods
David BanksDuke Uni�rsity

1



1. Introdu
tion

Data mining deals with 
omplex, high-dimensional data. This means that datasetsoften 
ombine di�erent kinds of stru
ture. For example:

• There might be several di�erent subgroups within the data, ea
h des
ribed by adi�erent linear relationship.
• Some 
lusters might be tightly grouped with respe
t to one subset of variables,whereas other 
lusters are grouped a

ording to di�erent variables.

• A few outliers 
an distort otherwise simple stru
ture; adaptive methods forignoring them are wanted.One wants a method that enables the analyst to sequentially extra
t simple stru
turesin the data.
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To illustrate the problem in the 
ontext of regression, 
onsider the following plot ofthe number of external links against the number of internal links for the webpages inthe Wikipedia. This is 
learly a mixture of linear stru
tures.
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The graph of the number of outgoing links for Wikipedia pages against the size ofpage is less 
lear, but the same kind of stru
ture is still present.
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More generally, one wants to �nd nonparametri
 regression stru
ture, of the kindshown below, in high (or moderately high) dimensional spa
es.
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To start simply, suppose one has two kinds of linear stru
tures and pure noise, e.g.:

• 40% of the data follow Y = α0 +
∑p

i=1
αiXi + ǫ

• 30% of the data follow Y = β0 +
∑p

i=1
βiXi + ǫ

• 30% of the data are noise.One 
an imagine that the two linear stru
tures 
orrespond to some unmeasured
ategori
al 
ovariate, and the pure noise represents a third 
ategory of 
ases.What 
an one do to analyze 
ases like this? One approa
h is to use a Bayesianmixture model, but this assumes that the analyst has some strong prior knowledgeabout the kinds of stru
ture that are present and the number of mixture 
omponents.Alternatively, one 
an use S-estimators, whi
h look for the thinnest strip (think of atransparent ruler) whi
h 
overs some prespe
i�ed (but larger than 50%) fra
tion ofthe data.
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All these strategies break down in high dimensions, or when the stru
tures of interest
ontain less than 50% of the sample, or when �tting 
omplex nonlinear models.We want a solution strategy that applies to more general 
ases, in
luding:

• linear and non-linear regression in high dimensions,

• multidimensional s
aling,
• 
luster analysis.The method des
ribed here 
an be extended to other 
ases as well.Our approa
h is to develop the method of elemental sets, proposed by A. C. Atkinson(�Masking Unmasked,� Biometrika; 1986) and developed further by Doug Hawkins(�The A

ura
y of Elemental Set Approximations for Regression,� JASA; 1993). Thismethod tries to �nd a small number of observations that 
orrespond to a stru
ture ofinterest, and then �grow� that set.
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2. Hidden Stru
ture in Regression

Consider the graph below, for a simple regression problem. It is 
lear that the data
ome from two di�erent models, and that any naive attempt at regression will missboth of the interesting stru
tures and �nd some kind of average solution.
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For linear regression, assume the observations are {Yi,Xi} for i = 1, . . . n and that Qper
ent of these follow the model

Yi = β0 + β1Xi1 + . . . + βpXip + ǫi where ǫi ∼ N(0, σ)where Q, β, and σ are unknown. The rest of the data have no relationship between Yiand Xi.One 
an refer to the Q% of the data as �good� and the rest as �bad�.Simple Idea:Start small, with a subsample of only good observations

⇒ add only good observations
⇒ end with a large subsample of good observations.General pro
edure:1. Strategi
ally 
hoose an initial set of d starting subsamples Sj , ea
h of size m.2. Grow the subsamples by adding 
onsistent data.3. Sele
t the largest subsample. 9



This �gure shows the true lines (unbroken), the elemental set lines (short dashes) andthe Bayes mixture model (long dashes).
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The method for 
hoosing the starting subsamples and growing them e�
iently isimportant in pra
ti
e.One starts with a guess about Q, the fra
tion of good data. In general, this isunknown, so one might pi
k a value that is reasonable given

• domain knowledge about the data 
olle
tion
• the point at whi
h a fra
tion is so small that there is little s
ienti�
 interest.From the full dataset {Yi,Xi} one sele
ts, without repla
ement, d subsamples Sj ofsize m.One needs to 
hoose d and m to ensure that at least one of the starting subsamples

Sj has a very high probability C of 
onsisting entirely of good data (i.e., data that
ome from the same unknown stru
ture).
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Preset a probability C that determines the 
han
e that the algorithm will work.The value m, whi
h is the size of the starting-point random subsamples, should bethe smallest possible value that allows one to 
al
ulate a goodness-of-�t measure. Inthe 
ase of multiple linear regression, that value is p + 2, and a natural goodness-of-�tmeasure is R2.One solves the following equation for d:
C = IP[ at least one of S1, . . . , Sd is all good ] = 1 − (1 − Qp+2)d.

Example: Q = .8, c = .95, m = 3 (for simple linear regression, with p = 1):

.95 = 1 − [1 − (.8)p+2]d → d = 5
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Given the d starting-point subsamples Sj , one grows ea
h one of them by addingobservations that do not appre
iably lower the goodness-of-�t statisti
 (R2).Con
eptually, for a parti
ular Sj , one 
ould 
y
le through all of the observations, andon ea
h 
y
le augment Sj by adding the observation that provided the largest value of

R2. This 
y
ling would 
ontinue until no observation 
an be added to Sj withoutsubstantially de
reasing the R2.One does this for all of the subsamples Sj . At the end of the pro
ess, ea
h augmented

Sj would have size mj and goodness-of-�t R2
j . The augmented subsample thata
hieves a large value of mj and a large value of R2

j is the one that 
aptures the mostimportant stru
ture in the data.Then one 
an remove the data in Sj and iterate to �nd the next-most importantstru
ture in the dataset.
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In pra
ti
e, the 
on
eptual algorithm whi
h adds one observation per 
y
le isexpensive when the dataset is large or when one is �tting a 
omplex model (e.g.,doing MARS �ts rather than multiple regression). For this reason, we use a two-steppro
edure to add observations.Fast Sear
h
• Sequentially sweep through all observations not in Si.

• If the obsevation improves the �tness measure (or perhaps only lowers it by avery small amount), then
→ add observation to Sj

→ set mj = mj + 1.If mj is large, say Qn/2,then implement slow sear
h.Slow Sear
h

• Add the observation that improves the FM the most or de
reases the �tnessmeasure by not more than some pre
hosen threshold.
• Repeat until no observation 
an be added.
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The analyst may pi
k a threshold that seems appropriately small and a fra
tion of nthat seems appropriately large. These 
hoi
es determine the runtime of the algorithmand should re�e
t pra
ti
al 
onstaints.The fast sear
h is greedy, and the order of observations in the 
y
ling matters. Theslow sear
h is less greedy; order does not matter, but it adds myopi
ally. The fastsear
h 
an add many observations per 
y
le through the data, but the slow sear
halways adds exa
tly one.If speed is truly important, then there are other ways to a

elerate the algorithm. Astandard strategy would be to in
rease the number of starting-point subsamples and
ombine those that provide similar models and �ts as they grow.

The main 
on
ern is not to enumerate all ( n

⌈Qn/100⌉

) possible subsamples.
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Note that:1. One does not need to terminate the sear
h at some preset fra
tion; one 
an justgrow until the goodness-of-�t measure deteriorates too mu
h.2. The goodness-of-�t measure should not depend upon the sample size. For SLRthis is easy, sin
e R2 is just the proportion of variation in Y explained by X. Forlarger p, if one is doing stepwise regression to sele
t variables, then one wantsto use an AIC or Mallows' Cp statisti
 to adjust the tradeo� in �t between thenumber of variables and the sample size.3. Other measures of �t are appropriate for nonparametri
 regression, su
has 
ross-validated within-subsample squared error. But this adds to the
omputational burden.4. One 
an and should monitor the �t as new observations are added. Whenone starts to add bad data, this is qui
kly visible in a plot�there is a 
lear�slippery-slope� e�e
t.
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To see how the slippery-slope o

urs, and the value of monitoring �t as a fun
tion oforder of sele
tion, 
onsider the plot below. This plot is based on using R2 for �tnessand a line + uniform noise model. The total sample size is 80, and 70 observationswere generated with moderate noise from a line; the knee in the 
urve 
learly showswhen one should stop adding observations.
0 20 40 60 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Sample Size

R
^2 knee in curve

sequential FM
17



3. Hidden Stru
ture in Multidimensional S
aling

Multidimensional s
aling (MDS) starts with a proximity matrix that givesapproximate distan
es between all pairs in a set of obje
ts. These distan
es are often
lose to a true metri
.The purpose of MDS is to �nd a low-dimensional plot of the obje
ts su
h that theinter-obje
t distan
es are as 
lose as possible to the values given in the proximitymatrix. That representation automati
ally puts similar obje
ts near ea
h other. Thisis done in terms of a least squares �t to the values in the proximity matrix, byminimizing the stress fun
tion:Stress(z1, . . . , zn) =





∑

i 6=i′

(dii′ − ‖zi − zi′‖)





1/2

where zi is the lo
ation assigned to pseudo-obje
t i in the low-dimensional spa
e and

dii′ is the entry in proximity matrix. 18



The 
lassi
 example is to take the entries in the proximity matrix to be the drive-timebetween pairs of 
ities. This is not a perfe
t metri
, sin
e roads 
urve, but it isapproximately 
orre
t. MDS �nds a plot in whi
h the relative position of the 
itieslooks like it would on a map (ex
ept the map 
an be in any orientation; north andsouth are not relevant).MDS solutions are extremely sus
eptible to bad data. For example, if one had a �atttire while driving from Baltimore to DC, this would 
reate a seemingly large dista
e.The MDS algorithm would distort the entire map in an e�ort to put Baltimore farfrom DC and still respe
t other inter-
ity drive times.A very small proportion of outliers, or obje
ts that do not �t well in a low-dimensionalrepresentation, 
an 
ompletely wre
k the interpretability of an MDS plot. In manyappli
ations, su
h as text retrieval, this is a serious problem.
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3.1 MDS Example

To test elemental set methods for MDS, 
onsider the latitudes and longitudes of 99eastern U.S. 
ities. The Eu
lidean distan
es between these 
ities gave the proximitymatrix; the only stress in the MDS map is due to the 
urvature of the earth.Perturb the proximity matrix by in�ating a random proportion 1 − Q of the entries:Bad Data Distortion (%) Stress150 1.0282 500 2.394150 1.79110 500 28.196150 3.34530 500 9.351
20



To make things more interesting, we use not the traditional MDS using the stressmeasure de�ned previously, but rather Kruskal-Shephard non-metri
 s
aling, in whi
hone �nds {zi} to minimizeStressKS(z1, . . . , zn) =

∑

i 6=i′ [θ((‖zi − zi′‖) − dii′ ]
2

∑

i 6=i′ d2
ii′where θ(·) is an arbitrary in
reasing fun
tion �t during the minimization. Theresult is invariant to monotoni
 transformations of the data, whi
h is why it isnonparametri
.This minimization uses an alternating algorithm that �rst �xes θ(·) and �nds the

{zi}, and then �xes the {zi} and uses isotoni
 regression to �nd θ(·). This shows thatthe algorithm 
an be used in 
omplex �ts.Our goal is to 
herry-pi
k the largest subset of 
ities whose inter
ity distan
es 
an berepresented with little stress.
21



In MDS, the size m of the initial subsamples is 4 (sin
e three points are always
oplanar). We took C = .99 as the prespe
i�ed 
han
e of getting at least one goodsubsample, and for Q = .8 this implies we need 9 starting samples. The results are inthe table. True Distan
e Original na n∗ Final

1 − Q (%) Distortion (%) Stress Stress150 1.028 80 80 4.78e-122 500 2.394 80 80 4.84e-12150 1.791 80 80 4.86e-1210 500 28.196 80 80 4.81e-12150 3.345 80 77 4.86e-1230 500 9.351 80 78 4.78e-12
• Note: The stress of the undistorted dataset was 8.42 × 10−12.
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As before, one should inspe
t order-of-entry plots that display the stress against the
ities 
hosen for in
lusion. The following two plots are typi
al, and show the knee inthe 
urve that o

urs when one begins to add bad 
ities.
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4. Cluster Analysis

Traditional 
luster analysis tends to perform poorly in high dimensions; a fewoutliers 
an distort the analysis (Kaufman & Rousseeuw 1990), and the Curse ofDimensionality makes it di�
ult to dis
over the hidden stru
ture (Hall et al. 2006;Bi
kel & Levina 2008). For these reasons, we apply the 
herry-pi
king heuristi
 to theproblem of multivariate 
luster analysis.An example of lo
ally low-dimensional 
lustering arises in biometri
 identi�
ationof typists from patterns in their keystroke hold times and inter-key laten
ies. Thisappli
ation is important in 
omputer se
urity, where one hopes to dis
over someonewho has stolen a password by the divergen
e of their typing rhythms from those ofthe genuine user.
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One study of keystroke patterns (Killourhy & Maxion 2008) had 51 typists type thesame ten letter password (`.tie5Roanl', 
hosen be
ause it 
ontains both awkward and
ommon 
ombinations on the qwerty keyboard, and a shift, exer
ising a range oftyping dynami
s). The parti
ipants typed the �strong� password 400 times, in eightsets of 50. Ea
h typing of the password produ
ed a ve
tor in IR21, 
onsisting of elevenhold times (one for ea
h of the ten letters and one for the Return key typed atthe end of the password) and ten keydown-keydown laten
ies (one for ea
h pair of
onse
utively-typed keys).Good biometri
 identi�
ation is a
hieved if the di�erent typists show strong
lustering. However, it was suspe
ted that the 
hara
teristi
 patterns of a typistmight show up 
learly in only some of the 
omponents of the ve
tor, and that those
omponents would di�er a

ording to the typist.
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The parallel-
oordinate plot depi
ts the typing rhythms of ea
h of the �ve typists.Ea
h typist's timing 
omponents are shown in a separate panel so styles may be
ompared. 26



Cherry-Pi
king Algorithm for Clustering:Step 1. Seeding: Three observations are randomly 
hosen as a 
luster seed. For thisseed sample, a measure of dispersion is 
al
ulated for ea
h of the 21 variables(i.e., the ratio of the sample standard deviation to its mean). The two variableswith the smallest dispersions a

ording to this measure are identi�ed.Step 2. Sele
tion: Using only these two low-dispersion variables, the bivariate
ovarian
e matrix for the 
lustered observations is 
al
ulated. For all theobservations not yet in the 
luster, the squared Mahalanobis distan
e to the meanof the 
luster is 
al
ulated. Ea
h distan
e was 
ompared with the 99th per
entileof the χ2
2 distribution, and those with distan
es below a threshold are added tothe 
luster.Step 3. Termination: The iteration pro
edure in step 2 is repeated until the 
luster
onverges (i.e., no new observations are added). The size of the resulting 
lusteris 
ompared to the expe
ted size of a 
luster (e.g., 50±5 elements). If the sizesdo not mat
h, the 
luster is dis
arded, and we return to Step 1 to �nd a better
luster.
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This 
herry-pi
king 
lustering algorithm was run on the 250-observation keystrokedata. The algorithm saved �ve 
lusters, ea
h of whi
h happened to 
ontain 50observations (but this was 
han
e, not manipulation). Breakout by TypistCluster Variable 1 Variable 2 1 2 3 4 51 Hold ( Shift r ) Hold ( l ) 1 48 0 1 02 Hold ( period ) Laten
y ( l - Return ) 2 1 1 46 03 Laten
y ( n - l ) Hold ( l ) 0 0 44 0 64 Laten
y ( �ve - Shift r ) Hold ( Shift r ) 2 0 4 3 415 Hold ( �ve ) Hold ( l ) 45 1 1 0 3Table 1: A summary of the 
lustering of the keystroke data. The two variable 
olumnslist whi
h variables the 
luster sele
ted. The �nal �ve 
olumns break down ea
h 
lusterinto whi
h typists' observations were in
luded in the 
luster. In ea
h 
ase, the 
lusterroughly 
orresponds to data from a single typist.
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5. Summary

• We have des
ribed a strategy for iterative stru
ture dis
overy in 
omplex datasets.

• It works in 
omputer-intensive appli
ations, but one needs smart sear
halgorithms; s
aling to large datasets is feasible but requires 
are.

• We 
an make probabilisti
 statements about the 
han
e of having a goodstarting-point subsample, and this almost leads to a probabilisti
 guarantee onthe result, but not quite.
• Simulation shows good performan
e in many appli
ations.
• The method is fairly straightforward for regression and nonparametri
 regression,MDS, and 
luster analysis.
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