
Interacting with Distributed
Data from R using SparkR

Hossein Falaki
@mhfalaki

Outline

• SparkR Architecture & API
• Data distribution
• R and JVM RPC

• Distributing R functions
• Use cases and best practices
• Code & platform unification
• Parallelizing existing logic
• Distributed ML

SparkR Architecture & API

What is SparkR

An R package released with Apache Spark:
• Provides R front-end to Apache Spark
• Exposes Spark DataFrames (inspired by R and Pandas)
• Enables distributed execution of R functions

General	distributed		
processing,	data	source,	off-

memory	DataFrames

dynamic	environment,	
interactivity,	+10K	packages,	

visualizations
+

Apache Spark, Spark and Apache are trademarks of the Apache Software Foundation

SparkR architecture
Spark Driver

JVM

Worker 1

JVM

Worker 2

Data Sources
JVMR

R Backend

JVM

SparkR architecture
Spark Driver

JVM

Worker 1

JVM

Worker 2

Data Sources
JVMR

R Backend

R R

R R

IO
read.df / write.df
createDataFrame / collect
Caching
cache / persist / unpersist
cacheTable / uncacheTable
SQL
sql / tableToDf
registerTempTable / tables

Overview of SparkR API
http://spark.apache.org/docs/latest/api/R/

ML Lib
glm / kmeans / Naïve Bayes
survival regression / ...
DataFrame API
select / subset / groupBy
head / avg / nrow / dim
UDF functionality
spark.lapply / dapply /
gapply / ...

SparkR API :: Spark Session

Importing the library
> library(SparkR)
Attaching package: ‘SparkR’

Initializing connection to Spark
> sparkR.session()
Spark package found in SPARK_HOME: /databricks/spark
Java ref type org.apache.spark.sql.SparkSession id 1

Session Initialization

4. RBackendHandler handles and
process requests

3. Each SparkR call sends serialized
data over the socket and waits for
response

R JVM
Backend

1. RBackend opens a server port and
waits for connections

2. SparkR establishes a TCP connection

SparkR Serialization

R JVM
Backend

R and JVM use a proprietary serialization format as wire protocol.

Basic type: type binary data

List: type element 1,size element 2, element 3, ...

SparkR API :: I/O

Reading
> spark.df <- read.df(path = “...”, source = “csv”)
> cache(spark.df)
> dim(spark.df)
[1] 1235349690 31

Writing
> write.df(spark.df, path = “...”, source = “json”)

Control plane

1. serialize method
name + arguments

2. Send to backend
3. de-serialize

4. find Spark method

5. invoke method

6. serialize returned
value

8. de-serialize and
return result to user

R JVM

7. Send to R process

Data plane
Spark Driver

JVM

Worker 1

JVM

Worker 2

Data Sources
JVMR

R Backend

SparkR API :: I/O

JVM to R
> r.df <- collect(spark.df)

R to JVM
> spark.df <- createDataFrame(iris)

Data plane
Spark Driver

JVM

Worker 1

JVM

Worker 2

Data Sources
JVMR

R Backend

SparkR API :: Transforming data

Filtering
> iad <- subset(df, df$Dest == “IAD”)

Grouping and aggregation
> arrivals <- count(groupBy(iad, iad$Origin))

Ordering
> head(orderBy(arrivals, -arrivals$count))

SparkR API :: SQL

> createOrReplaceTempView (df, “table”)
> arrivals <- sql(“

SELECT count(FlightNum) as count, Origin
FROM table
WHERE Dest == “IAD”
GROUP BY Origin”)

> plot(collect(arrivals))

Distributing R Computation

IO
read.df / write.df /
createDataFrame / collect
Caching
cache / persist / unpersist
cacheTable / uncacheTable
SQL
sql / table / saveAsTable
registerTempTable / tables

Overview of SparkR API
http://spark.apache.org/docs/latest/api/R/

ML Lib
glm / kmeans / Naïve Bayes
Survival regression
DataFrame API
select / subset / groupBy
head / avg / column / dim
UDF functionality
spark.lapply / dapply
gapply / dapplyCollect

SparkR UDF API

spark.lapply
Runs a function over
a list of elements on
workers

spark.lapply()

dapply
Applies a function to
each partition of a
SparkDataFrame

dapply()

dapplyCollect()

gapply
Applies a function to
each group within a
SparkDataFrame

gapply()

gapplyCollect()

spark.lapply

For each element of a list
1. Sends the function to an R worker
2. Executes the function
3. Returns the result of all workers as a list to R driver

spark.lapply(1:100, function(x) {
runBootstrap(x)

}

spark.lapply control flow

RWorker JVMR Driver JVM

1. serialize R closure

4. transfer over
local socket

7. serialize result

2. transfer over
local socket

8. transfer over
local socket

10. transfer over
local socket

11. de-serialize result

9. Transfer serialized closure over the network

3. Transfer serialized closure over the network

5. de-serialize closure

6. Execution

dapply

For each partition of the input Spark DataFrame
1. Collects the partition as an R data.frame inside the worker
2. Sends the R function to the R process inside worker
3. Executes the function with R data.frame as input

dapply(sparkDF, func, schema)

Returns results as DataFrame
with provided schema

dapplyCollect(sparkDF, func)

Returns results as an R
data.frame

dapply control & data flow

RWorker JVMR Driver JVM

local socket cluster network local socket

input data

ser/de transfer

result data

ser/de transfer

dapplyCollect control & data flow

RWorker JVMR Driver JVM

local socket cluster network local socket

input data

ser/de transfer

result data

ser/de transferresult deserialize

gapply

Groups the Spark DataFrame on one or more columns
1. Collects each group as an R data.frame inside the worker
2. Sends the R function to the R process inside worker
3. Executes the function with R data.frame as input

gapply(df, cols, func, schema)

Returns results as DataFrame
with provided schema

gapplyCollect(df, cols, func)

Returns results as an R
data.frame

gapplyCollect control & data flow

RWorker JVMR Driver JVM

local socket cluster network local socket

input data

ser/de transfer

result data

ser/de transferresult deserialize

data

shuffle

gapply dapply
signature gapply(df, cols, func, schema)

gapply(gdf, func, schema)
dapply(df, func, schema)

user	function
signature

function(key, data) function(data)

data	partition controlled	by	grouping not	controlled

Use Cases

1. Framework & code unification

Distributed	
Storage Local	Disk

Distributed	
Framework

1. Load, clean, transform,
aggregate, sample

2. Save to local storage 3. Read & analyze

4. Iterate

SparkR

Advantages of SparkR

What Why

No need	to	save	intermediate	data	on	disk Transfer	data	directly	into R	process

No	need	to	manage different	codebases Write entire	pipeline	in	R

Interactive	iterations	on	data Distributed	data	can	be	cached	on	cluster

Work with	any	data	source	&	formats Use	Apache	Spark	data	sources	ecosystem

Perform	interactive	analysis	on	distributed	at	the	speed	of	thinking	from	R

What to watch for

1. SparkR functions shadowing other packages
2. How much data can you collect()?
3. Cache your active Spark DataFrame
4. Push feature engineering to Spark as much as possible
• Merging datasets
• Transformations
• Filtering and projections
• Sampling

data.frame vs. DataFrame

• Example error messages

• ... doesn't know how to deal with data of class
SparkDataFrame

• no method for coercing this S4 class to a ...

• Expressions other than filtering predicates are
not supported in the first parameter of extract
operator.

R function vs. SparkSQL expression

Expressions translate to JVM calls, but functions run in R process of
driver or workers

• filter(logs$type ==
“ERROR”)

• ifelse(df$level > 2,
“deep”, “shallow”)

• dapply(logs, function(x) {

subset(x, type == “ERROR”)

}, schema(logs))

Compute-bound Data-bound

2. Parallelizing Existing R Programs

• Usually simple statistics
• Data is growing by volume or

complexity
• Number of interactions are growing
• Example: GWAS

• Complex logic implemented in R
• Multi-threaded to use more than a

single core
• Requires large workstation with a

lot of RAM and many cores
• Example: simulations, bootstraping

SparkR to rescue

• Instead of a single large machine (scaling up) use many
commodity computers (scaling out)
1. Perform data preparation (ETL) using SparkSQL
2. Distribute input data according to algorithm logic
3. Parallelize R function to execute on each partition

What to watch for

1. Skew in data/computation
• Are partitions evenly sized?
• Is computation uniform across partitions?

2. Packing too much data into the closure
3. Using third-party packages
4. Returned data schema
5. Keeping the pipeline full to minimize impact of fixed costs

Packing too much into the closure

Error in invokeJava(isStatic = FALSE, objId$id, methodName,
...):

org.apache.spark.SparkException: Job aborted due to stage
failure: Serialized task 29877:0 was 520644552 bytes, which
exceeds max allowed: spark.rpc.message.maxSize (268435456
bytes).

Using the wrong apply function

• Do not use spark.lapply() to distribute data
• createDataFrame()
• Load from storage

• Know your data partitioning
• partitionBy() %>% dapply()
• groupBy() %>% gapply()

3. Distributed Machine Learning

• SparkR exposes a wide range of distributed learning algorithms
implemented in Spark
• Formula-based API that takes SparkDataFrame instead of R

data.frame

> df <- createDataFrame(as.data.frame(Titanic))
> model <- glm(Freq ~ Sex + Age, df, family = "gaussian")
> summary(model)

What to watch for

• Spark MLlib models do not include data
• You need to compute residuals

• Many cases you need to specify number of iterations
• Spark uses a distributed iterative optimizer to

Thank You

