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Data and motivation

Our data come from a 2011 paper testing a VPS (acoustic telemetry)
tracking transmitters implanted in 22 gray smooth-hound sharks in
the tidal basin of a wetlands in Orange County, CA.

Data are the 2-D coordinate locations of the sharks and the times they
were recorded; the time gaps ∆t between observations were unequal.

From domain knowledge, biologists believe shark behavior largely
consists of either foraging (slow, meandering movement while
feeding) or transiting (faster movement between feeding areas).

Since the animal’s full trajectory—of which we have discrete
realizations—depends on the movement, which depends on the
behavior type, we can build a model to both estimate the
movement path at times it is not observed, and infer behavior
type from the movement.

Inferring spatial distributions of behavior types is interesting as a way
to identify ecologically-sensitive feeding areas.
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Gray smooth-hound shark (Mustelus Californicus)

Gray smooth-hound sharks are benthic (bottom-feeding) predators
that typically grow to a length of about 4–5 feet.

The Bolsa Chica wetlands have a southern outlet to the Pacific
Ocean. Sharks occasionally leave the wetlands; their locations are
then out of range of the receivers and thus unobserved.
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State-space models (SSMs)

State-space models (SSMs) are a general probabilistic method of
using observations yt to sequentially model time (t)-evolving
unobserved variables (‘states’) xt .

In robotics or tracking, yt are often sensor or location measurements.

Observations yt are assumed to have some measurement error, and xt
are noise-free values. Here, xt will include the animal’s (unobserved)
true location ζt and movement (e.g., speed vt and direction angle)
that result in the observed locations.

Optional vector θt contains additional hypothesized parameters, here
including the behavior type, denoted λt .

Sequentially update estimates of xt using new observed yt :

Prior on initial state: x0 ∼ p(x0)
State/dynamic equation: xt ∼ `(xt | xt−1, θt)

Measurement equation: yt ∼ m(yt | xt , θt)
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1-D robot SSM

Illustrate principles of 2-D shark movement, which includes direction,
using a simpler example of a robot moving along the 1-D real line.

At time t, its sensor measures position zt ∈ R with error; the
unknown true location at t is ζt .

Time gaps ∆t are a constant ∆Υ, so xt are modeled on the same
clock times as observations yt . This is relaxed later for sharks.

Velocity vt ∈ R between true ζt and ζt+1 is random ∼ N (α, σ).

We will later allow the robot to have either a slow and fast mode at
each t, analogous to the shark foraging/transiting. Thus vt will have
a bimodal mixture distribution with two values of α to estimate. For
simplicity, assume now vt is unimodal.

States xt =
[
ζt vt

]
are modeled sequentially by learning which

values best predict the observed yt = zt+1.

Samuel Ackerman, PhD (Advisers: Dr. Marc Sobel, Dr. Richard Heiberger) (Temple University Department of Statistics)Shark movement July 22, 2018 5 / 15



1-D robot SSM

State equation:

Velocities vt have single distribution with mean α

xt =

[
ζt
vt

]
∼ `( xt |xt−1,θ = α ) =N 2

([
ζt−1 + (∆Υ)(vt−1)

α

]
, Qt

)

Measurement equation:

yt =
[
zt+1

]
∼ m( yt |xt ) =N

( [
ζt + (∆Υ)(vt)

]
, Rt

)

● ● ● ● ● ●

ζ0 ζ1 ζ2 ζ5

∆ϒ v0 ∆ϒ v1

| | | |

z1 z2
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Particle filters (PFs)

Particle filters (PFs) generate multiple (N) simulations (‘particles’) of
the process (e.g. movement) variables xt =

[
ζt vt

]
to match the

observations (locations) yt = zt+1.

The particle set {x(n)
t }Nn=1 empirically estimate a posterior distribution

of guesses of the value of the true unobserved xt .

At each step t, each particle n calculates predictive density

d(ŷt | x(n)
t−1). Calculate a weight w

(n)
t as ∝ d(yt | x(n)

t−1), this density
evaluated at the observed value yt .

The higher w
(n)
t is, the more likely particle n’s modeled movement

x
(n)
t is to resulted in the observed yt , and so is a better guess.

Particle sets are resampled by the weights {w (n)
t }Nn=1, so particles

with more likely estimates are favored for future prediction.
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Particle filter CDLM visualization

We use the conditional dynamic linear model (CDLM; Carvalho
2010, et al.) PF formulation the 1-D robot. Here each particle n

simulates its own values of ζ(n) and v
(n)
t .

We use an animation to illustrate the 1-D PF. These shiny programs
will be available to-be-released package animalEKF.

Click here for video of demonstration of package’s cdlm robot()

function.

● ● ● ● ● ●

ζ0
(n) ζ1

(n) ζ2
(n) ζ5

(n)

∆ϒ v0
(n) ∆ϒ v1

(n)

| | | |

z1 z2
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1-D robot with two ‘behaviors’

The 1-D robot can have one of two speed modes (denoted by λt) at
each time point t: slow (0) and fast (1), analogous to shark foraging
and transiting.

Let E(vt | λt = slow) = α0 and E(vt | λt = fast) = α1, where
|α1| > |α0|. By separately modeling movement for each behavior λt ,
we can infer which behavior (unobserved) occurred by seeing which
movement type best predicts the observed location yt .

For each particle n, w
(n)
t|k ∝ d(yt | x(n)

t−1, λt = k) is the predictive

likelihood of observation yt if behavior λt = k occurred. The k for

which w
(n)
t|k is highest is the most probable behavior.

Particles are resampled by unconditional weights w
(n)
t =

∑
k w

(n)
t|k .

Behavior λ
(n)
t = k is drawn by the relative values of w

(n)
t|k after

resampling.
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Two-behavior (λ) CDLM visualization

The transition probabilities pi→j between slow/fast modes λt affect

the conditional weights w
(n)
t|k .

Click here for video of demonstration of package’s
cdlm robot twostate() function of modeling a dual-mode
trajectory.

● ● ● ● ● ●

ζ0
(n) ζ1

(n) ζ2
(n)ζ5

(n)

fast fastslow slow slow

| | | | |

z1 z2
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CDLM with interpolation

In reality, unlike the robot example, telemetry observations yt
typically do not occur at constant length ∆Υ time gaps.

However, for proper parameter updates we want to model the
movement xt at these equal time intervals. ∆Υ should be large
enough to represent a ‘distinct’ movement but short enough to allow
finer resolution of trajectories (e.g., 2 minutes).

Denote state movement at these intervals by xc at times Υc . For
simplicity let Υ0 = 0 and Υc = Υc−1 + ∆Υ.

For simplicity, sharks are modeled as moving in a straight line with
constant speed vc , depending on the behavior type λc , in each short
time interval (Υc ,Υc+1].
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CDLM with interpolation

In any constant-length interval (Υc ,Υc+1], either there are or aren’t
observations yt recorded.

If there are no observations, simulate movement from xc to xc+1 by a
single random draw of behavior λc | λc−1, then drawing
xc ∼ `(· | xc−1,λc = k) from the SSM equation.

If at least one observation is in the interval, predict straight-line
movement xc | (xc−1,λc = k) from Υc to Υc+1 for each behavior k .

Let {∆∗t } be the irregular time gaps from the interval Υc to the first,
and between each observation. For each yt , predict location
ŷt | (λc = k ,∆∗t ) along the straight line at the time of observation t.

Calculate behavior-conditional weights w
(n)
c|k by jointly how close

observations {yt} are to predictions {ŷt}. The behavior k whose
straight-line movement best jointly fits all observed locations (for

which k w
(n)
c|k is highest) is the most likely.
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Shark EKF with interpolation: observations yt

Linear movement from ζc to ζc+1 for each behavior λc ∈ {0, 1}, to
best fit observations yt = zt+1 and yt+1 = zt+2 in the interval.
Ellipses along lines between ζ̂c and ζ̂c+1 centered at (ẑt+1, ẑt+2) | λc .
Error ellipse sizes depend on time gaps ∆∗t between observations.
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Conclusions and continuations

Conclusion: are able to learn bimodal speed vt distribution indicative
of two behavior mixture for both observed and synthetic trajectories.
Also incorporate behavioral interactions between sharks to jointly
model ‘schooling’ tendencies.

Use cross-validation to demonstrate that interpolation PF works
better than simple non-statistical Euclidean connect-the-dots method
for modeling omitted observations.

Adapt a model-fit measure like Bayes Factor to PFs to demonstrate
that parameters match a given shark’s trajectory better than
another’s.
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6 Särkkä, Simo. “Bayesian Filtering and Smoothing.” Cambridge
University Press, 2013.

Samuel Ackerman, PhD (Advisers: Dr. Marc Sobel, Dr. Richard Heiberger) (Temple University Department of Statistics)Shark movement July 22, 2018 15 / 15


	Data introduction
	Data and variables


