A Probabilistic Characterization of Shark Movement Using Location Tracking Data

Samuel Ackerman, PhD (Advisers: Dr. Marc Sobel, Dr. Richard Heiberger)

Temple University Department of Statistical Science

ackerman@temple.edu

July 22, 2018

Samuel Ackerman, PhD (Advisers: Dr. Marc

Shark movement

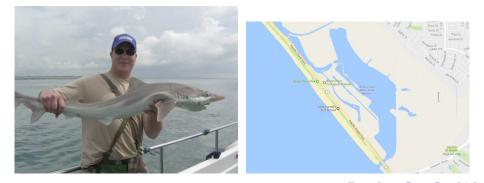
July 22, 2018 1 / 15

Data and motivation

- Our data come from a 2011 paper testing a VPS (acoustic telemetry) tracking transmitters implanted in 22 gray smooth-hound sharks in the tidal basin of a wetlands in Orange County, CA.
- Data are the 2-D coordinate locations of the sharks and the times they were recorded; the time gaps Δ_t between observations were unequal.
- From domain knowledge, biologists believe shark behavior largely consists of either **foraging** (slow, meandering movement while feeding) or **transiting** (faster movement between feeding areas).
- Since the animal's full trajectory—of which we have discrete realizations—depends on the movement, which depends on the behavior type, we can build a model to both estimate the movement path at times it is not observed, and infer behavior type from the movement.
- Inferring spatial distributions of behavior types is interesting as a way to identify ecologically-sensitive feeding areas.

Gray smooth-hound shark (Mustelus Californicus)

- Gray smooth-hound sharks are benthic (bottom-feeding) predators that typically grow to a length of about 4–5 feet.
- The Bolsa Chica wetlands have a southern outlet to the Pacific Ocean. Sharks occasionally leave the wetlands; their locations are then out of range of the receivers and thus unobserved.



State-space models (SSMs)

- State-space models (SSMs) are a general probabilistic method of using observations **y**_t to sequentially model time (t)-evolving unobserved variables ('states') **x**_t.
- In robotics or tracking, \mathbf{y}_t are often sensor or location measurements.
- Observations y_t are assumed to have some measurement error, and x_t are noise-free values. Here, x_t will include the animal's (unobserved) true location ζ_t and movement (e.g., speed v_t and direction angle) that result in the observed locations.
- Optional vector θ_t contains additional hypothesized parameters, here including the behavior type, denoted λ_t .

Sequentially update estimates of \mathbf{x}_t using new observed \mathbf{y}_t :

1-D robot SSM

- Illustrate principles of 2-D shark movement, which includes direction, using a simpler example of a robot moving along the 1-D real line.
- At time t, its sensor measures position z_t ∈ ℝ with error; the unknown true location at t is ζ_t.
- Time gaps Δ_t are a constant Δ_Υ, so x_t are modeled on the same clock times as observations y_t. This is relaxed later for sharks.
- Velocity $v_t \in \mathbb{R}$ between true ζ_t and ζ_{t+1} is random $\sim \mathcal{N}(\boldsymbol{\alpha}, \sigma)$.
- We will later allow the robot to have either a slow and fast mode at each t, analogous to the shark foraging/transiting. Thus v_t will have a bimodal mixture distribution with two values of α to estimate. For simplicity, assume now v_t is unimodal.
- States $\mathbf{x}_t = \begin{bmatrix} \zeta_t & v_t \end{bmatrix}$ are modeled sequentially by learning which values best predict the observed $\mathbf{y}_t = z_{t+1}$.

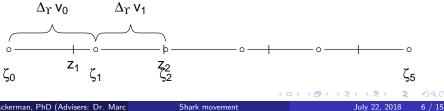
State equation:

Velocities v_t have single distribution with mean α

$$\mathbf{x}_{t} = \begin{bmatrix} \zeta_{t} \\ v_{t} \end{bmatrix} \sim \ell(\mathbf{x}_{t} | \mathbf{x}_{t-1}, \boldsymbol{\theta} = \boldsymbol{\alpha} \quad) = \mathcal{N}_{2}\left(\begin{bmatrix} \zeta_{t-1} + (\Delta_{\Upsilon})(v_{t-1}) \\ \boldsymbol{\alpha} \end{bmatrix}, \mathbf{Q}_{t} \right)$$

Measurement equation:

$$\mathbf{y}_t = \begin{bmatrix} z_{t+1} \end{bmatrix} \sim m(\mathbf{y}_t \mid \mathbf{x}_t)$$
 $) = \mathcal{N} \left(\begin{bmatrix} \zeta_t + (\Delta_{\Upsilon})(\mathbf{v}_t) \end{bmatrix}, \mathbf{R}_t \right)$

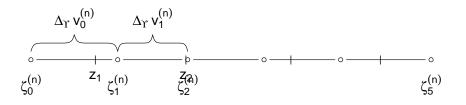


Particle filters (PFs)

- Particle filters (PFs) generate multiple (N) simulations ('particles') of the process (e.g. movement) variables x_t = [ζ_t v_t] to match the observations (locations) y_t = z_{t+1}.
- The particle set {x_t⁽ⁿ⁾}_{n=1}^N empirically estimate a posterior distribution of guesses of the value of the true unobserved x_t.
- At each step t, each particle n calculates predictive density $d(\hat{\mathbf{y}}_t \mid \mathbf{x}_{t-1}^{(n)})$. Calculate a weight $w_t^{(n)}$ as $\propto d(\mathbf{y}_t \mid \mathbf{x}_{t-1}^{(n)})$, this density evaluated at the observed value \mathbf{y}_t .
- The higher $w_t^{(n)}$ is, the more likely particle *n*'s modeled movement $\mathbf{x}_t^{(n)}$ is to resulted in the observed \mathbf{y}_t , and so is a better guess.
- Particle sets are resampled by the weights $\{w_t^{(n)}\}_{n=1}^N$, so particles with more likely estimates are favored for future prediction.

Particle filter CDLM visualization

- We use the **conditional dynamic linear model** (CDLM; Carvalho 2010, et al.) PF formulation the 1-D robot. Here each particle *n* simulates its own values of $\zeta^{(n)}$ and $v_t^{(n)}$.
- We use an animation to illustrate the 1-D PF. These shiny programs will be available to-be-released package animalEKF.
- Click here for video of demonstration of package's cdlm_robot() function.



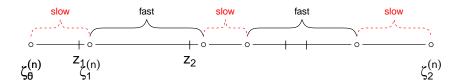
1-D robot with two 'behaviors'

- The 1-D robot can have one of two speed modes (denoted by λ_t) at each time point t: slow (0) and fast (1), analogous to shark foraging and transiting.
- Let E(v_t | λ_t = slow) = α₀ and E(v_t | λ_t = fast) = α₁, where |α₁| > |α₀|. By separately modeling movement for each behavior λ_t, we can infer which behavior (unobserved) occurred by seeing which movement type best predicts the observed location y_t.
- For each particle n, $w_{t|k}^{(n)} \propto d(\mathbf{y}_t \mid \mathbf{x}_{t-1}^{(n)}, \lambda_t = k)$ is the predictive likelihood of observation \mathbf{y}_t if behavior $\lambda_t = k$ occurred. The k for which $w_{t|k}^{(n)}$ is highest is the most probable behavior.
- Particles are resampled by unconditional weights $w_t^{(n)} = \sum_k w_{t|k}^{(n)}$. Behavior $\lambda_t^{(n)} = \mathbf{k}$ is drawn by the relative values of $w_{t|k}^{(n)}$ after resampling.

イロト イポト イヨト イヨト

Two-behavior (λ) CDLM visualization

- The transition probabilities p_{i→j} between slow/fast modes λ_t affect the conditional weights w⁽ⁿ⁾_{t|k}.
- Click here for video of demonstration of package's cdlm_robot_twostate() function of modeling a dual-mode trajectory.



- In reality, unlike the robot example, telemetry observations y_t typically do not occur at constant length Δ_Υ time gaps.
- However, for proper parameter updates we want to model the movement x_t at these equal time intervals. Δ_Υ should be large enough to represent a 'distinct' movement but short enough to allow finer resolution of trajectories (e.g., 2 minutes).
- Denote state movement at these intervals by x_c at times Υ_c. For simplicity let Υ₀ = 0 and Υ_c = Υ_{c-1} + Δ_Υ.
- For simplicity, sharks are modeled as moving in a straight line with constant speed v_c, depending on the behavior type λ_c, in each short time interval (Υ_c, Υ_{c+1}].

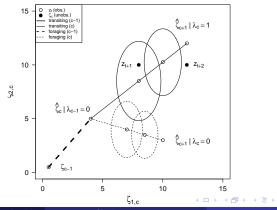
CDLM with interpolation

In any constant-length interval $(\Upsilon_c, \Upsilon_{c+1}]$, either there are or aren't observations \mathbf{y}_t recorded.

- If there are no observations, simulate movement from x_c to x_{c+1} by a single random draw of behavior λ_c | λ_{c-1}, then drawing x_c ~ ℓ(· | x_{c-1}, λ_c = k) from the SSM equation.
- If at least one observation is in the interval, predict straight-line movement x_c | (x_{c-1}, λ_c = k) from Υ_c to Υ_{c+1} for each behavior k.
- Let $\{\Delta_t^*\}$ be the irregular time gaps from the interval Υ_c to the first, and between each observation. For each \mathbf{y}_t , predict location $\hat{\mathbf{y}}_t \mid (\boldsymbol{\lambda_c} = \mathbf{k}, \Delta_t^*)$ along the straight line at the time of observation t.
- Calculate behavior-conditional weights w⁽ⁿ⁾_{c|k} by jointly how close observations {y_t} are to predictions {ŷ_t}. The behavior k whose straight-line movement best jointly fits <u>all</u> observed locations (for which k w⁽ⁿ⁾_{c|k} is highest) is the most likely.

Shark EKF with interpolation: observations \mathbf{y}_t

- Linear movement from ζ_c to ζ_{c+1} for each behavior $\lambda_c \in \{0, 1\}$, to best fit observations $\mathbf{y}_t = \mathbf{z}_{t+1}$ and $\mathbf{y}_{t+1} = \mathbf{z}_{t+2}$ in the interval.
- Ellipses along lines between $\hat{\zeta}_c$ and $\hat{\zeta}_{c+1}$ centered at $(\hat{z}_{t+1}, \hat{z}_{t+2}) \mid \lambda_c$.
- Error ellipse sizes depend on time gaps Δ_t^* between observations.



Two-behavior CDLM with interpolation

Samuel Ackerman, PhD (Advisers: Dr. Marc

July 22, 2018 13 / 15

- Conclusion: are able to learn bimodal speed v_t distribution indicative of two behavior mixture for both observed and synthetic trajectories. Also incorporate behavioral interactions between sharks to jointly model 'schooling' tendencies.
- Use cross-validation to demonstrate that interpolation PF works better than simple non-statistical Euclidean connect-the-dots method for modeling omitted observations.
- Adapt a model-fit measure like Bayes Factor to PFs to demonstrate that parameters match a given shark's trajectory better than another's.

Selected references

- Ackerman, Samuel. "A probabilistic characterization of shark movement using location tracking data." Temple University dissertation, 2018.
- Ackerman, Samuel. "animalEKF: Simulation and estimation of EKFs for animal movement." R package, 2018.
- Carvalho, Carlos M., Johannes, Michael S., Lopes, Hedibert F., and Nicholas G. Polson. "Particle learning and smoothing." Statistical Science, 2010.
- Oucet, Arnaud. "On sequential simulation-based methods for Bayesian filtering." Technical report, University of Cambridge. 1998
- Espinoza, Mario, Farrugia, Thomas J., and Christopher G. Lowe. "Habitat use, movements and site fidelity of the gray smooth-hound shark in a newly restored southern California estuary." Journal of Experimental Marine Biology and Ecology, 2011.
- Särkkä, Simo. "Bayesian Filtering and Smoothing." Cambridge University Press, 2013.