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Data and motivation

@ Our data come from a 2011 paper testing a VPS (acoustic telemetry)
tracking transmitters implanted in 22 gray smooth-hound sharks in
the tidal basin of a wetlands in Orange County, CA.

@ Data are the 2-D coordinate locations of the sharks and the times they
were recorded; the time gaps A; between observations were unequal.

@ From domain knowledge, biologists believe shark behavior largely
consists of either foraging (slow, meandering movement while
feeding) or transiting (faster movement between feeding areas).

@ Since the animal’s full trajectory—of which we have discrete
realizations—depends on the movement, which depends on the
behavior type, we can build a model to both estimate the
movement path at times it is not observed, and infer behavior
type from the movement.

@ Inferring spatial distributions of behavior types is interesting as a way
to identify ecologically-sensitive feeding areas.
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Gray smooth-hound shark (Mustelus Californicus)

e Gray smooth-hound sharks are benthic (bottom-feeding) predators
that typically grow to a length of about 4-5 feet.

@ The Bolsa Chica wetlands have a southern outlet to the Pacific
Ocean. Sharks occasionally leave the wetlands; their locations are
then out of range of the receivers and thus unobserved.
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State-space models (SSMs)

o State-space models (SSMs) are a general probabilistic method of
using observations y; to sequentially model time (t)-evolving
unobserved variables (‘states’) x;.

@ In robotics or tracking, y: are often sensor or location measurements.

@ Observations y; are assumed to have some measurement error, and x;
are noise-free values. Here, x; will include the animal’s (unobserved)
true location ¢, and movement (e.g., speed v; and direction angle)
that result in the observed locations.

@ Optional vector 6; contains additional hypothesized parameters, here
including the behavior type, denoted ).

Sequentially update estimates of x; using new observed y;:

Xt—1, 0t)
Xt, et)

State/dynamic equation: x; ~  £(x¢

Prior on initial state: xo ~  p(xo)
Measurement equation: 'y ~ m(y¢ |
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1-D robot SSM

@ lllustrate principles of 2-D shark movement, which includes direction,
using a simpler example of a robot moving along the 1-D real line.

o At time t, its sensor measures position z; € R with error; the
unknown true location at t is (;.

@ Time gaps A; are a constant A~, so x; are modeled on the same
clock times as observations y;. This is relaxed later for sharks.

@ Velocity v+ € R between true (; and (¢41 is random ~ A(cx, o).

@ We will later allow the robot to have either a slow and fast mode at
each t, analogous to the shark foraging/transiting. Thus v; will have
a bimodal mixture distribution with two values of « to estimate. For
simplicity, assume now v; is unimodal.

o States x; = [(¢ ;| are modeled sequentially by learning which
values best predict the observed y; = z:41.
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1-D robot SSM

State equation:
Velocities v; have single distribution with mean «

X; = |: €t :| -~ E( Xy ‘Xt—lae . ):NZ <|:Ct1 + (AT)(th):| 7 Qt)
t «
Measurement equation:
Yt = [Zt+1] ~m( Y [xe ) =N ( [ Ce + (Ar)(vt) ] ) Rt)
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Particle filters (PFs)

e Particle filters (PFs) generate multiple () simulations (‘particles’) of
the process (e.g. movement) variables x; = [(; v¢| to match the
observations (locations) y: = z¢41.

@ The particle set {xgn)}n’\’:1 empirically estimate a posterior distribution
of guesses of the value of the true unobserved x;.

@ At each step t, each particle n calculates predictive density
d(¥: | xgi)l). Calculate a weight Wt(") as o< d(y: | xﬁ”_)l), this density

evaluated at the observed value y;.

@ The higher Wt(") is, the more likely particle n's modeled movement

xg") is to resulted in the observed y;, and so is a better guess.

o Particle sets are resampled by the weights {Wt(") ,’)’:1, so particles

with more likely estimates are favored for future prediction.
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Particle filter CDLM visualization

@ We use the conditional dynamic linear model (CDLM; Carvalho
2010, et al.) PF formulation the 1-D robot. Here each particle n

simulates its own values of ¢(") and v,_gn).

@ We use an animation to illustrate the 1-D PF. These shiny programs
will be available to-be-released package animalEKF.

@ Click here for video of demonstration of package's cdlm_robot ()

function.
Av Vgn) Ay Vg_n)
/—H_J%
o o b o | o | o
n z n
g L % 7
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https://youtu.be/iVG_bCU0jCA

1-D robot with two ‘behaviors’

@ The 1-D robot can have one of two speed modes (denoted by ;) at
each time point t: slow (0) and fast (1), analogous to shark foraging
and transiting.

o Let E(v¢ | A\t = slow) = g and E(v; | A\¢ = fast) = a1, where
|ar| > |ap|. By separately modeling movement for each behavior A,
we can infer which behavior (unobserved) occurred by seeing which
movement type best predicts the observed location yy.

e For each particle n, ng‘k) o d(y: | xt 1, At = k) is the predictive
likelihood of observation y; if behavior Ay = k occurred. The k for

(n)

which Wy k is highest is the most probable behavior.

o Particles are resampled by unconditional weights w; * =", w t|k

Behavior /\g ") = k is drawn by the relative values of W(|k) after
resampling.
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Two-behavior (A) C

@ The transition probabilities p;_,; between slow/fast modes \; affect

the conditional weights Wt(ﬂ().

@ Click here for video of demonstration of package's
cdlm_robot_twostate() function of modeling a dual-mode

trajectory.
slow fast slow fast slow
; o } o o — ° .
(n) Z3(n) Z2 (n)
g Y
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https://youtu.be/4XR8eB89z7E

CDLM with interpolation

@ In reality, unlike the robot example, telemetry observations y;
typically do not occur at constant length A+ time gaps.

@ However, for proper parameter updates we want to model the
movement x; at these equal time intervals. A~ should be large
enough to represent a ‘distinct’ movement but short enough to allow
finer resolution of trajectories (e.g., 2 minutes).

@ Denote state movement at these intervals by x. at times T.. For
simplicity let To =0 and T, = Tc_1 + A~.

@ For simplicity, sharks are modeled as moving in a straight line with
constant speed v, depending on the behavior type Ac, in each short
time interval (¢, Tet1].
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CDLM with interpolation

In any constant-length interval (T, Tc41], either there are or aren't
observations y; recorded.

@ If there are no observations, simulate movement from x. to x.4+1 by a
single random draw of behavior A\¢ | Ac_1, then drawing
Xc ~ (- | Xc—1, Ac = k) from the SSM equation.

o If at least one observation is in the interval, predict straight-line
movement X¢ | (Xc—1, A¢ = k) from T to T41 for each behavior k.

o Let {A}} be the irregular time gaps from the interval T to the first,
and between each observation. For each y;, predict location
¥i | (Ac = k, A}) along the straight line at the time of observation t.

@ Calculate behavior-conditional weights Wé"k) by jointly how close

observations {y;} are to predictions {y;}. The behavior k whose
straight-line movement best jointly fits all observed locations (for

which k w() is highest) is the most likely.
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Shark EKF with in servations y;

@ Linear movement from . to ¢, for each behavior A\ € {0,1}, to
best fit observations y; = z;41 and y;+1 = Z:4» in the interval.

o Ellipses along lines between ¢, and &c+1 centered at (Z¢41, Zr42) | Ac.

@ Error ellipse sizes depend on time gaps A} between observations.

Two-behavior CDLM with interpolation

o z(obs)
15 e c(unobs)
|— wansiting (c-1)
— transiting (c)
|- - foraging (c-1)

-~ foraging (c)

A
Gl Ac=1
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Conclusions and continuations

@ Conclusion: are able to learn bimodal speed v; distribution indicative
of two behavior mixture for both observed and synthetic trajectories.
Also incorporate behavioral interactions between sharks to jointly
model ‘schooling’ tendencies.

@ Use cross-validation to demonstrate that interpolation PF works
better than simple non-statistical Euclidean connect-the-dots method
for modeling omitted observations.

@ Adapt a model-fit measure like Bayes Factor to PFs to demonstrate
that parameters match a given shark’s trajectory better than
another’s.
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