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PART I

MOTIVATION

1. Census of Agriculture

2. The calibration problem at NASS
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Census of Agriculture

Every five years, USDA’s National Agricultural Statistics Service
(NASS) conducts the Census of Agriculture.

I The Census provides a detailed picture of U.S. farms, ranches
and the people who operate them.

I It is the only source of uniform, comprehensive agricultural
data for every state and county in the United States.

I NASS also obtains information on most commodities from
administrative sources or surveys of non-farm populations
(e.g. cotton ginning data).
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DSE: Dual-System Estimation

NASS uses DSE to adjust its estimates by generating weights
assigned to each data-record.

I DSE requires two independent surveys to produce adjusted
estimates for under-coverage, non-response and incorrect
farm-classification at the national, state and county levels.

I The adjusted weights are used as starting values for the
calibration process.

I The weights are calibrated to ensure that the Census
estimates are consistent across all levels of aggregation and in
agreement with information from other sources.
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Calibration problem
A solution ŵ such that T = Aw , where

T is a vector partitioned into y known and y∗ unknown
population totals,

A is the matrix of collected data from a population, and

w is a vector of unknown weights.

Calibration finds the solution of the linear system y = Ãw , where

Ã is a sub-matrix of the collected data.

NASS publishes its estimates by using
integer weights

to avoid fractional farms.
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INCA: Integer Calibration
Currently, NASS uses the following steps to calibrate its weights:

1. All unfeasible weights are truncated to their closest boundary,
and to minimize the objective function, non-integer weights
are then rounded sequentially according to an importance
index based on the gradient.

2. Each weight, according to the magnitude of the gradient, is
allowed to move by unit-steps that decrease the objective
function.

Limitation

INCA converges to a local minima,
not to a global solution.
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PART II

METHODOLOGY

3. Quantum computing

4. Quantum rounding algorithm

5. Quantum integer calibration
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Quantum Computing and the future of INCA

Quantum computing

Looks promising for applications where
complex problems need

computationally efficient solutions, such as
finding a discrete global optimum.

Quantum Integer Calibration (QUINCA)
I Rounds the DSE weights with a quantum search.
I Performs multidimensional adjustments of the rounded

weights to match given calibration benchmarks.
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The quantum-bit (qubit)

Classical computers use bits to represent either zeros or ones, but
quantum computers operate with qubits (or quantum bits), which
are allowed to denote values that are simultaneously 0 and 1.

Observing the status of a qubit with superposition α0|0〉+ α1|1〉
will produce

x =

{
0, with probability |α0|2,
1, with probability |α1|2,

where

I the amplitudes of α0 and α1 ∈ C satisfy |α0|2 + |α1|2 = 1,

I |0〉 denotes the vector (1, 0)>, and

I |1〉 represents the vector (0, 1)>.
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Quantum operations

Quantum algorithms manipulate the qubits and produce
measurements of the probability distribution of the observed
outcomes.

1. The algorithm takes as input n classical bits and creates a
superposition of 2n possible states.

2. The superposition is then processed by quantum operations.

3. When the superposition is measured, it randomly collapses to
zero or one.

4. Step 3 is iterated to assure convergence over the probability
distribution.
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Quantum rounding at a glance
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Example of quantum rounding
I We have a matrix of data

A =

[
1 1 1
6 4 8

]
.

I We start with the DSE weights w∗ = (2.3, 5.1, 7.9)>.
I Our known totals are y = (15, 97)>.
I We consider the objective function

L(w) =
∑
i

|yi − w>Ai |,

where Ai is the i-th row of the matrix A.
I The gradient of L

g(w) = −A>sign(y − Aw).
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Quantum rounding at a glance (continued)
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Step 1: Trimming the weights
I The weights that do not satisfy given constraints are trimmed

and all the others are truncated.
I Update the weights

wi =


1, if w∗i < 1,

bw∗i c, if 1 ≤ w∗i < 6,

6, if w∗i ≥ 6,

where w∗i represents the i-th DSE weight.

In our example

w∗ = (2.3, 5.1, 7.9)>

w = (2, 5, 6)>
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Quantum rounding at a glance (continued)
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Step 2: Compute probabilities
A qubit |Ψi 〉 is initialized as |Ψi 〉 =

√
1− pi |0〉+

√
pi |1〉, where

the initial probabilities are computed as

pi =

{
g−1(1) gi (w

∗ − w), if gi < 0 and 0 < w∗ − w < 1,

0, otherwise,

where g−1(1) denotes the inverse of the smallest component of the
gradient, gi represents the i-th component of the gradient, for any
i = 1, . . . , n.

In our example

g = (−7, − 5, − 9)>

w∗ − w = (0.3, 0.1, 0)>

p = (0.23, 0.06, 0)>
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Quantum rounding at a glance (continued)
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Step 3 & 4: Stable setting of γ0 and γ1

I The quantities γ0i = 1− pi and γ1i = pi are set so that

pi =
γ1i

γ0i + γ1i
.

I These two values, γ0i and γ1i , will be updated at each
iteration.

In our example

γ0 = (0.77, 0.94, 1)>

γ1 = (0.23, 0.06, 0)>
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Quantum rounding at a glance (continued)
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Step 5 & 6: Observing the quantum state
I m binary vectors xj are generated by observing the quantum

states of the qubits j = 1, . . . ,m.
I The performance of these vectors is evaluated by a loss

function Lj associated to xj .

In our example

The measurements (with m = 5) and their losses are

x1 = (1, 0, 0)> → L1 = 12

x2 = (0, 0, 0)> → L2 = 19

x3 = (1, 0, 0)> → L3 = 12

x4 = (1, 1, 0)> → L4 = 7

x5 = (0, 0, 0)> → L5 = 19
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Quantum rounding at a glance (continued)
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Step 7: Updating the probabilities via γ0 and γ1

γ
[τ+1]
0i ← γ

[τ ]
0i (1− λ) + λ

m∑
j=1

(1− xji )

(
L(m) − Lj

L(m) − L(1)

)2

,

γ
[τ+1]
1i ← γ

[τ ]
1i (1− λ) + λ

m∑
j=1

xji

(
L(m) − Lj

L(m) − L(1)

)2

,

where

I L(1) denotes the minimum loss associated with the best fit,

I L(m) represents the maximum loss associated with the worst fit,

I the scalar λ ∈ [0, 1] is used to speed-up convergence.

In our example

For λ = 0.5,

γ0 = (0.38, 0.81, 1.34)>, and γ1 = (0.96, 0.53, 0)>

p = (0.71, 0.39, 0)>
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Quantum rounding at a glance (continued)
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Step 8: Convergence
These operations are iterated until convergence is achieved.

γ1i/(γ0i + γ1i )→ 0 ⇒ wi = bw∗i c

γ1i/(γ0i + γ1i )→ 1 ⇒ wi = dw∗i e

In our example

The probabilities p ≈ (1, 1, 0)>, so the vector of rounded
weights is

w + p =

2
5
6

+

1
1
0

 =

3
6
6


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QUINCA at a glance
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The calibration setting
I Final integer weights are computed iteratively by unit

adjustments according to the sign of the gradient.
I The feasible steps are computed by s � x .
I The components of the vector s satisfy the equality

si = −sign(gi ) and those of x are generated by measuring the
status of the qubits |Ψi 〉, for any i = 1, . . . , n.

In our example

The new gradient g and the vector s are

g = (−6, − 4, − 8)>

s = (1, 1, 1)>
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QUINCA at a glance (continued)
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Step 1: Qubits initialization
Qubits |Ψi 〉 are initialized to take into account only for feasible adjustments in
the opposite direction of the gradient; i.e.

pi =


0, if gi > 0 and wi < 2,

0, if gi < 0 and wi > buic − 1,

|gi |/max
(
|g(1)|, |g(n)|

)
, otherwise.

These are used to initialize γ0 and γ1.

In our example

p = (0.75, 0, 0)>

γ0 = (0.25, 1, 1)>

γ1 = (0.75, 0, 0)>
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QUINCA at a glance (continued)
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Step 2: Quantum adjustments
I The performance of the m binary vectors is evaluated by the

loss function Lj , for any j = 1, . . . ,m.
I γ0 and γ1 are updated as in the rounding algorithm.
I When the ratio γ1i/(γ0i + γ1i ) converges, wi ← wi + si x̂i ,

where

x̂i =

{
0, if γ0i > γ1i ,

1, otherwise.

In our example

The probabilities p ≈ (1, 0, 0)>, therefore

w + s � p =

3
6
6

+

1
1
1

�
1

0
0

 =

4
6
6


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QUINCA at a glance (continued)
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Step 3: Convergence

I At each iteration the gradient is updated and a new set of
probabilities are computed to initialize the qubits.

I The quantum calibration algorithm terminates when the ratio
γ1i/(γ0i + γ1i )→ 0 for any i = 1, . . . , n.

In our example

The optimal solution was found in ŵ = c(4, 6, 6)> with a
final loss of 2. No further adjustments are needed.
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PART III

APPLICATION

6. Simulation study

7. Concluding remarks

SDSS 2018 – Data Science at NISS – Luca Sartore 36

mailto:lsartore@niss.org


A simulation study
1) The data

I 150 weights ωi ∼ Gamma(3.333, 1).

I A 201× 150 matrix A is simulated such that

aki =

{
1, if k = 1,

bkicki , otherwise,

where bki ∼ Bernoulli(0.3) and cki ∼ Poisson(4).

I Calibration benchmarks are computed as y = Aω.

I DSE weights are simulated from a U(0, 7.5).

I Final weights are restricted such that ŵi ∈ [1, 6].
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A simulation study (continued)
2) The loss function and its gradient

The loss function is

Lj =
201∑
k=1

∣∣∣∣∣yk −
150∑
i=1

akiwi

∣∣∣∣∣ ,
and its gradient is

gi = −
201∑
k=1

sign(εk)aki ,

where εj = yk −
∑150

i=1 akiwi .
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A simulation study (continued)
3) The setting for the experiments

I Investigating the performance of the algorithm with respect to

I number of measurements m ∈ {64, 101, 161, 256},
I learning rate λ ∈ {0.50, 0.60, 0.69, 0.75}.

I The simulated vector of the DSE weights is the same for all
the combinations of m and λ.
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A simulation study (continued)
4) The results

Table: Final loss after QUINCA
Number of Learning Rate

Measurements 0.50 0.60 0.69 0.75
64 1588 1532 1529 1437

101 1498 1362 1403 1330
161 1585 1402 1468 1431
256 1610 1590 1343 1327

Table: Elapsed time in seconds
Number of Learning Rate

Measurements 0.50 0.60 0.69 0.75
64 0.75s 0.59s 0.82s 0.67s

101 1.74s 2.37s 1.61s 1.30s
161 2.99s 3.27s 2.28s 3.04s
256 3.19s 2.35s 6.03s 5.02s
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Concluding remarks

I QUINCA is a preliminary improvement of INCA.

I The proposed methodology performs a quantum search that,
by design, overcomes the limitations of INCA and finds better
vectors of integer calibrated weights.

I QUINCA adjusts the weights by performing multidimensional
steps and has the potential of converging heuristically to a
global solution.

I Future research can exploit quantum entanglement to move
towards a global solution in one step.
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Thank you!

Questions?

Luca Sartore, PhD

lsartore@niss.org

luca.sartore@nass.usda.gov
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