Online Program Home
  My Program

All Times EDT

Abstract Details

Activity Number: 91 - High Dimensional Data, Causal Inference, Biostats Education, and More
Type: Contributed
Date/Time: Monday, August 9, 2021 : 10:00 AM to 11:50 AM
Sponsor: ENAR
Abstract #318917
Title: Optimal Weighting for Estimating Generalized Average Treatment Effects
Author(s): Michele Santacatterina* and Nathan Kallus
Companies: George Washington University and Cornell University
Keywords: average treatment effect; causal inference; misspecification; covariate balance; optimization; positivity
Abstract:

In causal inference, a variety of causal effect estimands have been studied, including the sample, uncensored, target, conditional, optimal subpopulation, and optimal weighted average treatment effects. Ad-hoc methods have been developed for each estimand based on inverse probability weighting (IPW) and on outcome regression modeling, but these may be sensitive to model misspecification, practical violations of positivity, or both. The contribution of this paper is twofold. First, we formulate the generalized average treatment effect (GATE) to unify these causal estimands as well as their IPW estimates. Second, we develop a method based on Kernel Optimal Matching (KOM) to optimally estimate GATE and to find the GATE most easily estimable by KOM, which we term the Kernel Optimal Weighted Average Treatment Effect. KOM provides uniform control on the conditional mean squared error of a weighted estimator over a class of models while simultaneously controlling for precision. We study its theoretical properties and evaluate its comparative performance in a simulation study. We illustrate the use of KOM for GATE estimation in two case studies.


Authors who are presenting talks have a * after their name.

Back to the full JSM 2021 program