Abstract:
|
The U.S. Bureau of Labor Statistics (BLS) publish employment totals for all U.S. counties on a monthly basis. BLS use the Quarterly Census of Employment and Wages, where responses are received on a $6-7$ month lagged basis and aggregated to county, and apply a time series forecast model to each county and project forward to the current month, which ignores the dependence among counties. Our approach treats these by-county employment time series as a collection of area indexed noisy functions that we co-model. Our model includes predictor, trend and seasonality terms indexed by county. This application is among the first in the U.S. Federal Statistical System to address the joint modeling of a collection of time series expressing heterogenous seasonality patterns between them. We demonstrate that use of a Fourier basis to model seasonality outperforms a locally-adaptive, intrinsic conditional autoregressive construction on our collection of time series where the degree of expressed seasonality varies. County-indexed parameters of the 3 terms are drawn from a dependent Dirichlet process (DDP) prior to allow the borrowing of information. We show that employment of both spatial
|