Online Program Home
  My Program

All Times EDT

Abstract Details

Activity Number: 289 - Recent Advances in Mathematical Statistics and Probability
Type: Contributed
Date/Time: Wednesday, August 11, 2021 : 1:30 PM to 3:20 PM
Sponsor: IMS
Abstract #318108
Title: Random Graph Asymptotics for Treatment Effect Estimation Under Network Interference
Author(s): Shuangning Li* and Stefan Wager
Companies: Stanford University and Stanford University
Keywords: direct effect; graphon; indirect effect; potential outcome; sensitivity analysis
Abstract:

The network interference model has recently gained popularity as means of incorporating interference effects into the Neyman--Rubin potential outcomes framework; and several authors have considered estimation of various causal targets, including the direct and indirect effects of treatment. In this work, we consider large-sample asymptotics for treatment effect estimation under network interference in a setting where the exposure graph is a random draw from a graphon. When targeting the direct effect, we show that---in our setting---popular estimators are considerably more accurate than existing results suggest, and provide a CLT in terms of moments of the graphon. Meanwhile, when targeting the indirect effect, we leverage our generative assumptions to propose a consistent estimator in a setting where no other consistent estimators are currently available. We also show how our results can be used to conduct a practical assessment of the sensitivity of randomized study inference to potential interference effects. Overall, our results highlight the promise of random graph asymptotics in understanding the practicality and limits of causal inference under network interference.


Authors who are presenting talks have a * after their name.

Back to the full JSM 2021 program