Online Program Home
  My Program

All Times EDT

Abstract Details

Activity Number: 134 - Bayesian Modeling
Type: Contributed
Date/Time: Monday, August 9, 2021 : 1:30 PM to 3:20 PM
Sponsor: Section on Statistical Computing
Abstract #317977
Title: Lookahead Acquisition Functions for Finite-Budget, Time-Dependent Bayesian Optimization: Application to Quantum Optimal Control
Author(s): Ashwin Ashwin Renganathan*
Companies: Argonne National Laboratory
Keywords: Bayesian optimization; Gaussian process models; derivative-free optimization
Abstract:

We propose a novel Bayesian method to solve the maximization of a time-dependent expensive-to-evaluate stochastic oracle. We are interested in the decision that maximizes the oracle at a finite time horizon, given a limited budget of noisy evaluations of the oracle that can be performed before the horizon. Our recursive two-step lookahead acquisition function for Bayesian optimization makes nonmyopic decisions at every stage by maximizing the expected utility at the specified time horizon. Specifically, we propose a generalized two-step lookahead framework with a customizable \emph{value} function that allows users to define the utility, and we illustrate how lookahead versions of classic acquisition functions such as the expected improvement, probability of improvement, and upper confidence bound can be obtained with this framework. We demonstrate the utility of our proposed approach on several carefully constructed synthetic cases and a real-world quantum optimal control problem.


Authors who are presenting talks have a * after their name.

Back to the full JSM 2021 program