Online Program Home
  My Program

All Times EDT

Abstract Details

Activity Number: 417 - Recent advancement on life time data analysis
Type: Contributed
Date/Time: Thursday, August 12, 2021 : 2:00 PM to 3:50 PM
Sponsor: Lifetime Data Science Section
Abstract #317893
Title: Semiparametric Regression Analysis of Partly Interval-Censored Failure Time Data with Application to an AIDS Clinical Trial
Author(s): Qingning Zhou* and Yanqing Sun and Peter Gilbert
Companies: University of North Carolina at Charlotte and University of North Carolina at Charlotte and Fred Hutchinson Cancer Research Center
Keywords: AIDS clinical trial; EM algorithm; Partly interval-censored data; Semiparametric transformation models; Survival analysis
Abstract:

Failure time data subject to various types of censoring commonly arise in epidemiological and biomedical studies. Motivated by an AIDS clinical trial, we consider regression analysis of failure time data that include exact and left-, interval-, and/or right-censored observations, which are often referred to as partly interval-censored failure time data. We study the effects of potentially time-dependent covariates on partly interval-censored failure time via a class of semiparametric transformation models that includes the widely used proportional hazards model and the proportional odds model as special cases. We propose an EM algorithm for the nonparametric maximum likelihood estimation and show that it unifies some existing approaches developed for traditional right-censored data or purely interval-censored data. In particular, the proposed method reduces to the partial likelihood approach in the case of right-censored data under the proportional hazards model. We establish that the resulting estimator is consistent and asymptotically normal. In addition, we investigate the proposed method via simulation studies and apply it to the motivating AIDS clinical trial.


Authors who are presenting talks have a * after their name.

Back to the full JSM 2021 program