Abstract:
|
We propose a method which jointly incorporates geometric and topological information to estimate object boundaries in images, through use of a topological clustering-based method to assist initialization of the Bayesian active contour model. Active contour methods combine pixel clustering, boundary smoothness, and prior shape information to estimate object boundaries. These methods are known to be extremely sensitive to algorithm initialization, relying on the user to provide a reasonable initial boundary. This task is difficult for images featuring objects with complex topological structures, such as holes or multiple connected components. Our proposed method provides an interpretable, smart initialization in these settings, freeing up the user from potential pitfalls. We provide a detailed simulation study, and then demonstrate our method on artificial image datasets from computer vision, as well as real-world applications to skin lesion and neural cellular images, for which multiple topological features can be identified.
|