Online Program Home
  My Program

All Times EDT

Abstract Details

Activity Number: 6 - Highlights in 'Bayesian Analysis': Stories to Tell
Type: Invited
Date/Time: Sunday, August 8, 2021 : 1:30 PM to 3:20 PM
Sponsor: Section on Bayesian Statistical Science
Abstract #316863
Title: Semiparametric Functional Factor Models with Bayesian Rank Selection
Author(s): Daniel Kowal*
Companies: Rice University
Keywords: factor analysis; nonparametric regression; shrinkage prior; spike-and-slab prior; yield curve
Abstract:

Functional data are frequently accompanied by parametric templates that describe the typical shapes of the functions. Although the templates incorporate critical domain knowledge, parametric functional data models can incur significant bias, which undermines the usefulness and interpretability of these models. To correct for model misspecification, we augment the parametric templates with an infinite-dimensional nonparametric functional basis. The nonparametric factors are regularized with an ordered spike-and-slab prior, which implicitly provides rank selection and satisfies several appealing theoretical properties. This prior is accompanied by a parameter-expansion scheme customized to boost MCMC efficiency, and is broadly applicable for Bayesian factor models. The versatility of the proposed approach is illustrated through applications to synthetic data, human motor control data, and dynamic yield curve data. Relative to parametric alternatives, the proposed semiparametric functional factor model eliminates bias, reduces excessive posterior uncertainty, and provides reliable inference on the effective number of nonparametric terms—all with minimal additional computational costs.


Authors who are presenting talks have a * after their name.

Back to the full JSM 2021 program