Online Program Home
  My Program

All Times EDT

Abstract Details

Activity Number: 267 - Statistical Methods for Large Spatial Data
Type: Invited
Date/Time: Wednesday, August 11, 2021 : 1:30 PM to 3:20 PM
Sponsor: Section on Statistical Computing
Abstract #315548
Title: Valid Model-Free Spatial Prediction
Author(s): Brian Reich* and Ryan James Martin and Huiying James Mao
Companies: North Carolina State University and North Carolina State University and North Carolina State University
Keywords: Conformal prediction; Geostatistics; Kriging; Nonparametric; Nonstationary; Prediction
Abstract:

Predicting the response at an unobserved location is a fundamental problem in spatial statistics. Given the difficulty in modeling spatial dependence, especially in non-stationary cases, model-based prediction intervals are at risk of misspecification bias that can negatively affect their validity. Here we present a new approach for model-free spatial prediction based on the conformal prediction machinery. Our key observation is that spatial data can be treated as exactly or approximately exchangeable in a wide range of settings. For example, when the spatial locations are deterministic, we prove that the response values are, in a certain sense, locally approximately exchangeable for a broad class of spatial processes, and we develop a local spatial conformal prediction algorithm that yields valid prediction intervals without model assumptions. Numerical examples with both real and simulated data confirm that the proposed conformal prediction intervals are valid and generally more efficient than existing model-based procedures across a range of non-stationary and non-Gaussian settings.


Authors who are presenting talks have a * after their name.

Back to the full JSM 2021 program