Online Program Home
  My Program

All Times EDT

Abstract Details

Activity Number: 135 - Multiplicity, Missing Data and Other Topics
Type: Contributed
Date/Time: Monday, August 9, 2021 : 1:30 PM to 3:20 PM
Sponsor: Biopharmaceutical Section
Abstract #318260
Title: Treatment Effect Bias from Sample Snooping: Blinding Outcomes Is Neither Necessary nor Sufficient
Author(s): Aaron Fisher*
Companies: Foundation Medicine Inc
Keywords: confounder selection; fishing; objective design; propensity score; p-hacking; multiplicity
Abstract:

Popular guidance on observational data analysis states that outcomes should be blinded when determining matching criteria or propensity scores. Such a blinding is informally said to maintain the “objectivity” of the analysis, and to prevent analysts from artificially amplifying the treatment effect by exploiting chance imbalances. Contrary to this notion, we show that outcome blinding is not a sufficient safeguard against fishing. Blinded and unblinded analysts can produce bias of the same order of magnitude in cases where the outcomes can be approximately predicted from baseline covariates. We illustrate this vulnerability with a combination of analytical results and simulations. Finally, to show that outcome blinding is not necessary to prevent bias, we outline an alternative sample partitioning procedure for estimating the average treatment effect on the controls, or the average treatment effect on the treated. This procedure uses all of the the outcome data from all partitions in the final analysis step, but does not require the analysis to not be fully prespecified.


Authors who are presenting talks have a * after their name.

Back to the full JSM 2021 program